Numerical simulation of intra-chamber processes in a solid rocket motor with account for burning surface motion
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 71 (2021), pp. 90-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The axisymmetric solid rocket motor (SRM) with an “umbrella” shape is considered in this paper. The numerical algorithm based on the inverse Lax-Wendroff procedure for a gas dynamic equation and on the level-set method for tracking the burning surface is overviewed for internal ballistics problems. Assuming that the propellant combustion proceeds in a quasi-stationary regime and a mass flow from the burning surface depends on the pressure raised to the power of parameter v, the numerical computations of intra-chamber combustion product flows during the main-firing phase are carried out using the numerical algorithm developed for “umbrella”-shaped SRM at different parameter values. The approximation convergence of flow parameters in a case of the stationary propellant surface and average intra-chamber pressure for all the time of motor operation is examined. The numerical simulation results are obtained and analyzed for different “umbrella” inclination angles. Though the developed algorithm has been applied to the motors with a specific shape, it can also be used for propellant grains of different shapes and is easily extended to 3D models.
Keywords: solid rocket motor, level-set method, inverse Lax-Wendroff procedure, numerical simulation, internal ballistics, gas dynamics.
@article{VTGU_2021_71_a7,
     author = {A. E. Kiryushkin and L. L. Minkov},
     title = {Numerical simulation of intra-chamber processes in a solid rocket motor with account for burning surface motion},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {90--105},
     year = {2021},
     number = {71},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_71_a7/}
}
TY  - JOUR
AU  - A. E. Kiryushkin
AU  - L. L. Minkov
TI  - Numerical simulation of intra-chamber processes in a solid rocket motor with account for burning surface motion
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 90
EP  - 105
IS  - 71
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_71_a7/
LA  - ru
ID  - VTGU_2021_71_a7
ER  - 
%0 Journal Article
%A A. E. Kiryushkin
%A L. L. Minkov
%T Numerical simulation of intra-chamber processes in a solid rocket motor with account for burning surface motion
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 90-105
%N 71
%U http://geodesic.mathdoc.fr/item/VTGU_2021_71_a7/
%G ru
%F VTGU_2021_71_a7
A. E. Kiryushkin; L. L. Minkov. Numerical simulation of intra-chamber processes in a solid rocket motor with account for burning surface motion. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 71 (2021), pp. 90-105. http://geodesic.mathdoc.fr/item/VTGU_2021_71_a7/

[1] Milekhin Yu. M., Klyuchnikov A. N., Popov V. S., “Sopryazhennaya zadacha modelirovaniya vnutriballisticheskikh kharakteristik bessoplovykh RDTT”, Fizika goreniya i vzryva, 49:5 (2013), 77–85

[2] Glazunov A. A., Eremin I. V., Zhiltsov K. N., Kostyushin K. V., Tyryshkin I. M., Shuvarikov V. A., “Chislennoe issledovanie opredeleniya velichin pulsatsii davleniya i sobstvennykh akusticheskikh chastot v kamerakh sgoraniya s napolnitelem slozhnoi formy”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2018, no. 53, 59–72 | DOI

[3] Cavallini E., Modeling and Numerical Simulation of Solid Rocket Motors Internal Ballistics, PhD thesis, 2010 https://core.ac.uk/download/pdf/74323997.pdf

[4] Sultwald W., Grain regression analysis, Master's thesis, 2014 https://scholar.sun.ac.za/bitstream/handle/10019.1/86526/sullwald_grain_2014.pdf

[5] Tshokotsha M. H., Internal Ballistic Modelling of Solid Rocket Motors Using Level Set Methods for Simulating Grain Burnback, Master's thesis, 2016 https://pdfs.semanticscholar.org/d0c7/5902ebacf32fc3c60e57158a9e040b9154f8.pdf

[6] Lorente A. P., Study of Grain Burnback and Performance of Solid Rocket Motors, PhD Thesis, 2013 https://upcommons.upc.edu/bitstream/handle/2099.1/17700/Memoria_Arnau_Pons_Lorente.pdf

[7] Osher S., Fedkiw R., Level Set Methods and Dynamic Implicit Surfaces, Springer, New York, 2003 | DOI | Zbl

[8] Kiryushkin A. E., Minkov L. L., “Chislennoe reshenie dvumernykh uravnenii gazovoi dinamiki s podvizhnymi granitsami na nepodvizhnoi vychislitelnoi setke na primere zadach vnutrennei ballistiki RDTT”, Vserossiiskaya molodezhnaya nauchnaya konferentsiya «Vse grani matematiki i mekhaniki», sb. statei, Izdatelskii Dom TGU, Tomsk, 2017, 168–176

[9] Kiryushkin A. E., Minkov L. L., “Chislennoe reshenie zadachi vnutrennei ballistiki RDTT na vsem uchastke raboty dlya zaryadov slozhnoi formy”, V Vserossiiskaya nauchno-tekhnicheskaya konferentsiya s mezhdunarodnym uchastiem «Aktualnye problemy raketno-kosmicheskoi tekhniki», «V Kozlovskie chteniya», sb. materialov, v. 2, 2017, 55–64

[10] Kiryushkin A. E., Minkov L. L., “Solution of internal ballistic problem for SRM with grain of complex shape during main firing phase”, Journal of Physics: Conference series, 894:1 (2017), 012041-1–012041-7 | DOI

[11] Tan S., Shu C.-W., “Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws”, Journal of Computational Physics, 229:26 (2010), 8144–8166 | DOI | Zbl

[12] Tan S., Shu C.-W., Ning J., “Efficient Implementation of high order inverse Lax-Wendroff boundary treatment for conservation laws”, Journal of Computational Physics, 231:72 (2012), 2510–2527 | DOI | Zbl

[13] Tan S., Shu C.-W., “Inverse Lax-Wendroff Procedure for numerical boundary conditions of hyperbolic equations: Survey and new developments”, Advances in Applied Mathematics, Modeling, and Computational Science, 66 (2013), 41–63 | DOI

[14] Gottlieb S., Shu C.-W., “Total variation diminishing Runge-Kutta schemes”, Mathematics of Computation, 67 (1998), 73–85 | DOI | Zbl

[15] Shu C.-W., “Total-variation-diminishing time discretizations”, SIAM Journal on Scientific and Statistical Computing, 9 (1988), 1073–1084 | DOI | Zbl

[16] Harten A., Engquist B., Osher S., Chakravarthy S. R., “Uniformly high-order accurate nonoscillatory schemes”, Journal of Computational Physics, 71:2 (1987), 231–303 | DOI | Zbl

[17] Shu C.-W., Osher S., “Efficient implementation of essentially non-oscillatory shock capturing schemes”, Journal of Computational Physics, 83:1 (1989), 32–78 | DOI | Zbl