A boundary state method for solving a mixed problem of the theory of anisotropic elasticity with mass forces
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 71 (2021), pp. 63-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents a methodology for determining a stress-strain state of transversely isotropic bodies of revolution under conditions of a mixed problem of the elasticity theory, i.e. displacements of the boundary points are specified on the one part of the surface, and forces are assigned on the other part. At the same time, the body is exposed to mass forces. The problem solving involves the development of the boundary state method. A theory is created to construct the bases of spaces for internal and boundary states. The basis of the internal states includes displacements, strains, and stresses. The basis of the boundary states includes forces at the boundary, displacements of the boundary points, and mass forces. Spaces are conjugated by an isomorphism. It allows one to reduce the determination of the internal state to a study of the boundary state. Characteristics of the stress-strain state are presented in terms of the Fourier series. Finally, the determination of the elastic state is reduced to the solving of an infinite system of algebraic equations. A result of the study is presented as a solution to the main mixed problem for a hemisphere clamped on a plane surface and exposed to a concentrated compressive force and mass forces.
Keywords: boundary state method, transversely isotropic bodies, boundary value problems, main mixed problem, state space.
Mots-clés : mass forces
@article{VTGU_2021_71_a5,
     author = {D. A. Ivanychev},
     title = {A boundary state method for solving a mixed problem of the theory of anisotropic elasticity with mass forces},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {63--77},
     year = {2021},
     number = {71},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_71_a5/}
}
TY  - JOUR
AU  - D. A. Ivanychev
TI  - A boundary state method for solving a mixed problem of the theory of anisotropic elasticity with mass forces
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 63
EP  - 77
IS  - 71
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_71_a5/
LA  - ru
ID  - VTGU_2021_71_a5
ER  - 
%0 Journal Article
%A D. A. Ivanychev
%T A boundary state method for solving a mixed problem of the theory of anisotropic elasticity with mass forces
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 63-77
%N 71
%U http://geodesic.mathdoc.fr/item/VTGU_2021_71_a5/
%G ru
%F VTGU_2021_71_a5
D. A. Ivanychev. A boundary state method for solving a mixed problem of the theory of anisotropic elasticity with mass forces. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 71 (2021), pp. 63-77. http://geodesic.mathdoc.fr/item/VTGU_2021_71_a5/

[1] Bozhkova L. V., Ryabov V. G., Noritsina G. I., “Smeshannaya ploskaya zadacha teorii uprugosti dlya dvukhsloinoi koltsevoi oblasti”, Izvestiya Moskovskogo gosudarstvennogo tekhnicheskogo universiteta MAMI, 2011, no. 1 (11), 217–221

[2] Sobol B. V., “Ob asimptoticheskikh resheniyakh trekhmernykh staticheskikh zadach teorii uprugosti so smeshannymi granichnymi usloviyami”, Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2011, no. 4 (4), 1778–1780

[3] Goloskokov D. P., Danilyuk V. A., “Modelirovanie napryazhenno-deformirovannogo sostoyaniya uprugikh tel s pomoschyu polinomov”, Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S. O. Makarova, 2013, no. 1, 8–14

[4] Struzhanov V. V., “O reshenii kraevykh zadach teorii uprugosti metodom ortogonalnykh proektsii”, Matematicheskoe modelirovanie sistem i protsessov, 2004, no. 12, 89–100

[5] Agakhanov E. K., Magomedeminov N. S., “Usloviya ekvivalentnosti vozdeistvii dlya peremeschenii”, Vestnik DGTU. Tekhnicheskie nauki, 2007, no. 12, 27–28

[6] Fukalov A. A., “Zadachi ob uprugom ravnovesii sostavnykh tolstostennykh transversalnoizotropnykh sfer, nakhodyaschikhsya pod deistviem massovykh sil i vnutrennego davleniya, i ikh prilozheniya”, KhI Vserossiiskii s'ezd po fundamentalnym problemam teoreticheskoi i prikladnoi mekhaniki (Kazan, 2015), 3951–3953

[7] Levina L. V., Kuzmenko N. V., “Obratnyi metod effektivnogo analiza sostoyaniya uprugogo tela ot massovykh sil iz klassa nepreryvnykh”, KhI Vserossiiskii s'ezd po fundamentalnym problemam teoreticheskoi i prikladnoi mekhaniki (Kazan, 2015), 2276–2278

[8] Stankevich I. V., “Matematicheskoe modelirovanie zadach teorii uprugosti s ispolzovaniem MKE na osnove funktsionala Reissnera”, Simvol nauki, 2017, no. 4 (2), 21–25

[9] Stankevich I. V., “Chislennoe reshenie smeshannykh zadach teorii uprugosti s odnostoronnimi svyazyami”, Matematika i matematicheskoi modelirovanie, 2017, no. 5, 40–53 | DOI

[10] Ponomareva M. A., Sobko E. A., Yakutenok V. A., “Reshenie osesimmetrichnykh zadach teorii potentsiala nepryamym metodom granichnykh elementov”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2015, no. 5(37), 84–96

[11] Penkov V. B., Penkov V. V., “Primenenie metoda granichnykh sostoyanii dlya resheniya osnovnoi smeshannoi zadachi lineinogo kontinuuma”, Izvestiya Tulskogo gosudarstvennogo universiteta. Seriya: Matematika. Mekhanika. Informatika, 6:2 (2000), 124–127

[12] Kuzmenko V. I., Kuzmenko N. V., Levina L. V., Penkov V. B., “Sposob resheniya zadach izotropnoi teorii uprugosti s ob'emnymi silami v polinomialnom predstavlenii”, Prikladnaya matematika i mekhanika, 83:1 (2019), 84–94 | DOI | Zbl

[13] Penkov V. B., Levina L. V., Novikova O. S., “Analiticheskoe reshenie zadach elastostatiki odnosvyaznogo tela, nagruzhennogo nekonservativnymi ob'emnymi silami. Teoreticheskoe i algoritmicheskoe obespechenie”, Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Fiziko-matematicheskie nauki, 24:1 (2020), 56–73 | DOI | Zbl

[14] Ivanychev D. A., Levina E. Yu., “Solution of thermo elasticity problems for solids of revolution with transversal isotropic feature and a body force”, Journal of Physics: Conference Series, 1348 (2019), 012058, 15 pp. | DOI

[15] Ivanychev D. A., “The method of boundary states in solving problems of thermoelasticity in the presence of mass forces”, Proceedings of the 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency, SUMMA 2019, 83–87 | DOI

[16] Ivanychev D. A., Levin M. Yu., Levina E. Yu., “The boundary state method in solving the anisotropic elasticity theory problems for a multi-connected flat region”, TEST Engineering Management, 81 (2019), 4421–4426

[17] Ivanychev D. A., Levina E.Yu., Abdullakh L. S., Glazkova Yu. A., “The method of boundary states in problems of torsion of anisotropic cylinders of finite length”, International Transaction Journal of Engineering, Management, Applied Sciences Technologies, 10:2 (2019), 183–191 | DOI

[18] Aleksandrov A. Ya., Solovev Yu. I., Prostranstvennye zadachi teorii uprugosti (primenenie metodov teorii funktsii kompleksnogo peremennogo), Nauka, M., 1978, 464 pp.

[19] Penkov V. B., Penkov V. V., “Metod granichnykh sostoyanii dlya resheniya zadach lineinoi mekhaniki”, Dalnevostochnyi matematicheskii zhurnal, 2:2 (2001), 115–137

[20] Lekhnitskii S. G., Teoriya uprugosti anizotropnogo tela, 2-e izd., Nauka, M., 1977, 416 pp.

[21] Satalkina L. V., “Naraschivanie bazisa prostranstva sostoyanii pri zhestkikh ogranicheniyakh k energoemkosti vychislenii”, Sbornik tezisov dokladov nauchnoi konferentsii studentov i aspirantov Lipetskogo gosudarstvennogo tekhnicheskogo universiteta, 2007, 130–131

[22] Levina L. V., Novikova O. S., Penkov V. B., “Polnoparametricheskoe reshenie zadachi teorii uprugosti odnosvyaznogo ogranichennogo tela”, Vestnik LGTU, 2016, no. 2 (28), 16–24

[23] Ivanychev D. A., “Metod granichnykh sostoyanii v reshenii vtoroi osnovnoi zadachi teorii anizotropnoi uprugosti s massovymi silami”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2019, no. 61, 45–60 | DOI

[24] Ivanychev D. A., “Reshenie kontaktnoi zadachi teorii uprugosti dlya anizotropnykh tel vrascheniya s massovymi silami”, Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mekhanika, 2019, no. 2, 49–62 | DOI