Convergence of locally self-similar solutions to exact numerical solutions of boundary layer equations for a plate
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 71 (2021), pp. 49-62
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper considers a possibility of using locally self-similar solutions for a stationary boundary layer in linear stability problems. The solutions, obtained at various boundary conditions for a vibrationally excited gas, are compared with finite-difference calculations of the corresponding flows. An initial system of equations for a plane boundary layer of the vibrationally excited gas is derived from complete equations of two-temperature relaxation aerodynamics. Relaxation of vibrational modes of gas molecules is described in the framework of the Landau–Teller equation. Transfer coefficients depend on the static flow temperature. In a complete problem statement, the flows are calculated using the Crank–Nicolson finite-difference scheme. In all the considered cases, it is shown that the locally self-similar velocity and temperature profiles converge to the corresponding profiles for a fully developed boundary-layer flow calculated in a finite-difference formulation. The obtained results justify the use of locally self-similar solutions in problems of the linear stability theory for boundary-layer flows of a vibrationally excited gas.
Keywords:
boundary layer, stability, vibrationally excited gas, locally self-similar solutions, finite-difference calculations.
@article{VTGU_2021_71_a4,
author = {Yu. N. Grigoriev and A. G. Gorobchuk and I. V. Ershov},
title = {Convergence of locally self-similar solutions to exact numerical solutions of boundary layer equations for a plate},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {49--62},
publisher = {mathdoc},
number = {71},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2021_71_a4/}
}
TY - JOUR AU - Yu. N. Grigoriev AU - A. G. Gorobchuk AU - I. V. Ershov TI - Convergence of locally self-similar solutions to exact numerical solutions of boundary layer equations for a plate JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2021 SP - 49 EP - 62 IS - 71 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2021_71_a4/ LA - ru ID - VTGU_2021_71_a4 ER -
%0 Journal Article %A Yu. N. Grigoriev %A A. G. Gorobchuk %A I. V. Ershov %T Convergence of locally self-similar solutions to exact numerical solutions of boundary layer equations for a plate %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2021 %P 49-62 %N 71 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2021_71_a4/ %G ru %F VTGU_2021_71_a4
Yu. N. Grigoriev; A. G. Gorobchuk; I. V. Ershov. Convergence of locally self-similar solutions to exact numerical solutions of boundary layer equations for a plate. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 71 (2021), pp. 49-62. http://geodesic.mathdoc.fr/item/VTGU_2021_71_a4/