Convergence of locally self-similar solutions to exact numerical solutions of boundary layer equations for a plate
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 71 (2021), pp. 49-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers a possibility of using locally self-similar solutions for a stationary boundary layer in linear stability problems. The solutions, obtained at various boundary conditions for a vibrationally excited gas, are compared with finite-difference calculations of the corresponding flows. An initial system of equations for a plane boundary layer of the vibrationally excited gas is derived from complete equations of two-temperature relaxation aerodynamics. Relaxation of vibrational modes of gas molecules is described in the framework of the Landau–Teller equation. Transfer coefficients depend on the static flow temperature. In a complete problem statement, the flows are calculated using the Crank–Nicolson finite-difference scheme. In all the considered cases, it is shown that the locally self-similar velocity and temperature profiles converge to the corresponding profiles for a fully developed boundary-layer flow calculated in a finite-difference formulation. The obtained results justify the use of locally self-similar solutions in problems of the linear stability theory for boundary-layer flows of a vibrationally excited gas.
Keywords: boundary layer, stability, vibrationally excited gas, locally self-similar solutions, finite-difference calculations.
@article{VTGU_2021_71_a4,
     author = {Yu. N. Grigoriev and A. G. Gorobchuk and I. V. Ershov},
     title = {Convergence of locally self-similar solutions to exact numerical solutions of boundary layer equations for a plate},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {49--62},
     year = {2021},
     number = {71},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_71_a4/}
}
TY  - JOUR
AU  - Yu. N. Grigoriev
AU  - A. G. Gorobchuk
AU  - I. V. Ershov
TI  - Convergence of locally self-similar solutions to exact numerical solutions of boundary layer equations for a plate
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 49
EP  - 62
IS  - 71
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_71_a4/
LA  - ru
ID  - VTGU_2021_71_a4
ER  - 
%0 Journal Article
%A Yu. N. Grigoriev
%A A. G. Gorobchuk
%A I. V. Ershov
%T Convergence of locally self-similar solutions to exact numerical solutions of boundary layer equations for a plate
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 49-62
%N 71
%U http://geodesic.mathdoc.fr/item/VTGU_2021_71_a4/
%G ru
%F VTGU_2021_71_a4
Yu. N. Grigoriev; A. G. Gorobchuk; I. V. Ershov. Convergence of locally self-similar solutions to exact numerical solutions of boundary layer equations for a plate. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 71 (2021), pp. 49-62. http://geodesic.mathdoc.fr/item/VTGU_2021_71_a4/

[1] Wang X., Non-equilibrium effects on the stability of a Mach 10 flat-plate boundary layer, AIAA Paper No 2017-3162, June 2017, 24 pp. | DOI

[2] Kunova O. V., Shoev G. V., Kudryavtsev A. N., “Numerical simulation of nonequilibrium flows by using the state-to-state approach in commercial software”, Thermophysics and Aeromechanics, 24:1 (2017), 7–17 | DOI

[3] Chen X., Fu S., “Research of hypersonic boundary layer instability with thermal-chemical nonequilibrium effects”, Proc. 8th European Conference for Aeronautics and Aerospace Sciences, EUCASS 2019 (1–4 July, Madrid, 2019), 2019, 1–7 | DOI

[4] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoi literatury, M.–L., 1950, 676 pp.

[5] Grigor'ev Yu.N., Ershov I. V., “Linear stability of the boundary layer of relaxing gas on a plate”, Fluid Dynamics, 54:3 (2019), 295–307 | DOI

[6] Gaponov S. A., Petrov G. V., Ustoichivost pogranichnogo sloya neravnovesno dissotsiiruyuschego gaza, Nauka, Novosibirsk, 2013, 95 pp.

[7] Blottner F. G., “Similar and nonsimilar solutions for nonequilibrium laminar boundary layer”, AIAA Journal, 1:9 (1963), 2156–2157 | DOI

[8] Bertolotti F. B., “The influence of rotational and vibrational energy relaxation on boundary-layer stability”, Journal of Fluid Mechanics, 372 (1998), 93–118 | DOI | Zbl

[9] Grigoryev Yu.N., Ershov I. V., Stability and suppression of turbulence in relaxing molecular gas flows, Springer Intern. Publishing, Cham, 2017, 233 pp. | DOI

[10] Brailovskaya I. Yu., Chudov L. A., “Reshenie uravnenii pogranichnogo sloya raznostnym metodom”, Vychislitelnye metody i programmirovanie, 1, Izd-vo MGU, M., 1962, 167–182

[11] Paskonov V. M., “Standartnaya programma dlya resheniya zadach pogranichnogo sloya”, Chislennye metody v gazovoi dinamike, v. 2, Izd-vo MGU, M., 1963, 110–116