@article{VTGU_2021_71_a4,
author = {Yu. N. Grigoriev and A. G. Gorobchuk and I. V. Ershov},
title = {Convergence of locally self-similar solutions to exact numerical solutions of boundary layer equations for a plate},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {49--62},
year = {2021},
number = {71},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2021_71_a4/}
}
TY - JOUR AU - Yu. N. Grigoriev AU - A. G. Gorobchuk AU - I. V. Ershov TI - Convergence of locally self-similar solutions to exact numerical solutions of boundary layer equations for a plate JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2021 SP - 49 EP - 62 IS - 71 UR - http://geodesic.mathdoc.fr/item/VTGU_2021_71_a4/ LA - ru ID - VTGU_2021_71_a4 ER -
%0 Journal Article %A Yu. N. Grigoriev %A A. G. Gorobchuk %A I. V. Ershov %T Convergence of locally self-similar solutions to exact numerical solutions of boundary layer equations for a plate %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2021 %P 49-62 %N 71 %U http://geodesic.mathdoc.fr/item/VTGU_2021_71_a4/ %G ru %F VTGU_2021_71_a4
Yu. N. Grigoriev; A. G. Gorobchuk; I. V. Ershov. Convergence of locally self-similar solutions to exact numerical solutions of boundary layer equations for a plate. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 71 (2021), pp. 49-62. http://geodesic.mathdoc.fr/item/VTGU_2021_71_a4/
[1] Wang X., Non-equilibrium effects on the stability of a Mach 10 flat-plate boundary layer, AIAA Paper No 2017-3162, June 2017, 24 pp. | DOI
[2] Kunova O. V., Shoev G. V., Kudryavtsev A. N., “Numerical simulation of nonequilibrium flows by using the state-to-state approach in commercial software”, Thermophysics and Aeromechanics, 24:1 (2017), 7–17 | DOI
[3] Chen X., Fu S., “Research of hypersonic boundary layer instability with thermal-chemical nonequilibrium effects”, Proc. 8th European Conference for Aeronautics and Aerospace Sciences, EUCASS 2019 (1–4 July, Madrid, 2019), 2019, 1–7 | DOI
[4] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoi literatury, M.–L., 1950, 676 pp.
[5] Grigor'ev Yu.N., Ershov I. V., “Linear stability of the boundary layer of relaxing gas on a plate”, Fluid Dynamics, 54:3 (2019), 295–307 | DOI
[6] Gaponov S. A., Petrov G. V., Ustoichivost pogranichnogo sloya neravnovesno dissotsiiruyuschego gaza, Nauka, Novosibirsk, 2013, 95 pp.
[7] Blottner F. G., “Similar and nonsimilar solutions for nonequilibrium laminar boundary layer”, AIAA Journal, 1:9 (1963), 2156–2157 | DOI
[8] Bertolotti F. B., “The influence of rotational and vibrational energy relaxation on boundary-layer stability”, Journal of Fluid Mechanics, 372 (1998), 93–118 | DOI | Zbl
[9] Grigoryev Yu.N., Ershov I. V., Stability and suppression of turbulence in relaxing molecular gas flows, Springer Intern. Publishing, Cham, 2017, 233 pp. | DOI
[10] Brailovskaya I. Yu., Chudov L. A., “Reshenie uravnenii pogranichnogo sloya raznostnym metodom”, Vychislitelnye metody i programmirovanie, 1, Izd-vo MGU, M., 1962, 167–182
[11] Paskonov V. M., “Standartnaya programma dlya resheniya zadach pogranichnogo sloya”, Chislennye metody v gazovoi dinamike, v. 2, Izd-vo MGU, M., 1963, 110–116