Strongly and solidly $\omega_1$-weak $p^{\omega\cdot 2+n}$-projective abelian $p$-groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 71 (2021), pp. 5-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We define the classes of strongly $\omega_1$-weak $p^{\omega\cdot 2+n}$-projective, solidly $\omega_1$-weak $p^{\omega\cdot 2+n}$-projective and nicely $\omega_1$-weak $p^{\omega\cdot 2+n}$-projective abelian $p$-groups and study their crucial properties. This continues our recent investigations of this branch, published in Hacettepe J. Math. Stat. (2013) and Bull. Malaysian Math. Sci. Soc. (2014), respectively.
Keywords: $\Sigma$-cyclic groups, $p^{\omega+n}$-projective groups, $\omega_1$-$p^{\omega\cdot 2+n}$-projective groups, strongly $\omega_1$-$p^{\omega+n}$-projective groups.
@article{VTGU_2021_71_a0,
     author = {Peter V. Danchev},
     title = {Strongly and solidly $\omega_1$-weak $p^{\omega\cdot 2+n}$-projective abelian $p$-groups},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--12},
     year = {2021},
     number = {71},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_71_a0/}
}
TY  - JOUR
AU  - Peter V. Danchev
TI  - Strongly and solidly $\omega_1$-weak $p^{\omega\cdot 2+n}$-projective abelian $p$-groups
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 5
EP  - 12
IS  - 71
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_71_a0/
LA  - en
ID  - VTGU_2021_71_a0
ER  - 
%0 Journal Article
%A Peter V. Danchev
%T Strongly and solidly $\omega_1$-weak $p^{\omega\cdot 2+n}$-projective abelian $p$-groups
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 5-12
%N 71
%U http://geodesic.mathdoc.fr/item/VTGU_2021_71_a0/
%G en
%F VTGU_2021_71_a0
Peter V. Danchev. Strongly and solidly $\omega_1$-weak $p^{\omega\cdot 2+n}$-projective abelian $p$-groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 71 (2021), pp. 5-12. http://geodesic.mathdoc.fr/item/VTGU_2021_71_a0/

[1] P. V. Danchev, “On primary abelian groups modulo finite subgroups”, Communications in Algebra, 37 (2009), 933–947 | DOI | Zbl

[2] P. V. Danchev, “On strongly and separably $\omega_1$-$p^{\omega+n}$-projective abelian $p$-groups”, Hacettepe Journal of Mathematics and Statistics, 43 (2014), 51–64 | Zbl

[3] P. V. Danchev, “On $\omega_1$-weakly $p^\alpha$-projective abelian $p$-groups”, Bulletin of the Malaysian Mathematical Sciences Society, 37 (2014), 1057–1074 | Zbl

[4] P. V. Danchev, “On nicely and separately $\omega_1$-$p^{\omega+n}$-projective abelian $p$-groups”, Mathematical Reports, 17 (2015), 91–105 | Zbl

[5] P. V. Danchev, P. W. Keef, “Generalized Wallace theorems”, Mathematica Scandinavica, 104 (2009), 33–50 | DOI | Zbl

[6] P. V. Danchev, P. W. Keef, “An application of set theory to $\omega+n$-totally $p^{\omega+n}$-projective primary abelian groups”, Mediterranean Journal of Mathematics, 8 (2011), 525–542 | DOI | Zbl

[7] L. Fuchs, Infinite Abelian Groups, v. I, Academic Press, New York, 1970 ; v. II, 1973 | Zbl

[8] P. Griffith, Infinite Abelian Group Theory, University of Chicago Press, Chicago, 1970 | Zbl