Estimation of heterogeneity of the atmospheric air velocity field in adsorbers of front-end purification units for air separation plants
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 70 (2021), pp. 117-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Assuming unidirectional motion of compressed atmospheric air through a vertical cylindrical adsorbent with a fixed granular layer of the front-end purification unit adsorbent, the mathematical model for estimating the heterogeneity of a hydrodynamic velocity field in the radial and axial directions in a turbulent regime is proposed. The model is based on the boundary layer approximation of the Darcy–Brinkman–Forchheimer phenomenological equation. The steady-state flow at low permeability of the granular layer is identified using the collocation method, and the approximate analytical solution is obtained which justifies the applicability of an ideal displacement mode when describing the carrier medium motion. Numerical integration of a boundary value problem of the model equation using the finite-difference method with Richardson extrapolation confirms the conclusion validity. The structure of an accelerated turbulent flow having constant flow velocity in the input section shows that for small Forchheimer coefficients, the Darcy–Brinkman equation is used to obtain the analytical ratio for calculating the length of the initial hydrodynamic section. The proposed mathematical model for estimating the heterogeneity of the velocity field in adsorbers with a stationary dispersed layer is applicable for a laminar flow regime. Testing of this approach by assessing velocity field uniformity for a mass-produced front-end purification unit of air separation plants has shown its efficiency.
Mots-clés : granular adsorbent layer
Keywords: velocity field heterogeneity, porosity, permeability, atmospheric air.
@article{VTGU_2021_70_a9,
     author = {O. N. Filimonova and A. A. Vorobyov and A. S. Vikulin},
     title = {Estimation of heterogeneity of the atmospheric air velocity field in adsorbers of front-end purification units for air separation plants},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {117--126},
     year = {2021},
     number = {70},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_70_a9/}
}
TY  - JOUR
AU  - O. N. Filimonova
AU  - A. A. Vorobyov
AU  - A. S. Vikulin
TI  - Estimation of heterogeneity of the atmospheric air velocity field in adsorbers of front-end purification units for air separation plants
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 117
EP  - 126
IS  - 70
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_70_a9/
LA  - ru
ID  - VTGU_2021_70_a9
ER  - 
%0 Journal Article
%A O. N. Filimonova
%A A. A. Vorobyov
%A A. S. Vikulin
%T Estimation of heterogeneity of the atmospheric air velocity field in adsorbers of front-end purification units for air separation plants
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 117-126
%N 70
%U http://geodesic.mathdoc.fr/item/VTGU_2021_70_a9/
%G ru
%F VTGU_2021_70_a9
O. N. Filimonova; A. A. Vorobyov; A. S. Vikulin. Estimation of heterogeneity of the atmospheric air velocity field in adsorbers of front-end purification units for air separation plants. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 70 (2021), pp. 117-126. http://geodesic.mathdoc.fr/item/VTGU_2021_70_a9/

[1] P. Singla, K. Chowdhury, “Comparisons of thermodynamic and economic performances of cryogenic air separation plants designed for external and internal compression of oxygen”, Applied Thermal Engineering, 160 (2019), 114025 | DOI

[2] G. V. Brigagão, J. L. de Medeiros, O. Q. Araújo, “A novel cryogenic vapor-recompression air separation unit integrated to oxyfuel combined-cycle gas-to-wire plant with carbon dioxide enhanced oil recovery”, Energy Conversion and Management, 189 (2019), 202–214 | DOI

[3] M. Suzuki, Adsorption Engineering, Kodansha Ltg, Tokya, 1990, 278 pp.

[4] D. P. Nolan, Handbook of fire and explosion protection engineering principles for oil, gas, chemical and related facilities, William Andrew, NY, 2014, 487 pp.

[5] J. Toth, Adsorption: Theory, Modeling, Analysis, Marcel Dekker, Inc., NY, 2001, 880 pp.

[6] D. A. Nield, A. Bejan, Convection in Porous Media, Springer, NY, 2006, 654 pp. | Zbl

[7] I. V. Kornilov, Yu. E. Petrov, I. I. Sagadatov, I. Kh. Tagirov, P. O. Yapryntsev, Avtotekhnicheskoe i elektrogazovoe obespechenie aviatsionnykh chastei, UGATU, Ufa, 2016, 130 pp.

[8] G. I. Bumagin, E. I. Rogalskii, L. V. Popov, “Avtomobilnaya mnogotselevaya vozdukhorazdelitelnaya ustanovka AKDS-100 novogo pokoleniya”, Tekhnicheskie gazy, 2008, no. 1, 48–51

[9] E. Yu. Tarasova, “Novye resheniya, vysokaya effektivnost: opyt sozdaniya VRU KDADAR18/14”, Tekhnicheskie gazy, 2011, no. 6, 2–8

[10] A. M. Arkharov i dr., Kriogennye sistemy, v. 2, Osnovy proektirovaniya apparatov, ustanovok i sistem, Mashinostroenie, M., 1999, 720 pp.

[11] N. B. Vargaftik, Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei, Nauka, M., 1972, 721 pp.

[12] T. Lai, X. Liu, S. Xue, J. Xu, M. He, Y. Zhang, “Extension of Ergun equation for the calculation of the flow resistance in porous media with higher porosity andopen-celled structure”, Applied Thermal Engineering, 173 (2020), 115262 | DOI

[13] B. Alazmi, K. Vafai, “Analysis of variable porosity, thermal dispersion, and local thermal nonequilibrium on free surface flows through porous media”, Journal of Heat Transfer, 126:3 (2004), 389–399 | DOI

[14] V. I. Ryazhskikh, D. A. Konovalov, M. I. Slyusarev, I. G. Drozdov, “Analiz matematicheskoi modeli teplos'ema s ploskoi poverkhnostyu laminarno dvizhuschimsya khladagentom cherez sopryazhennuyu poristuyu sredu”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, 2:3 (2016), 68–81

[15] T. Bühber, D. A. Salamon, Functional analysis, American Mathematical Society, NY, 2018, 482 pp.

[16] Dzh. Konnor, K. Brebbia, Metod konechnykh elementov v mekhanike zhidkosti, Sudostroenie, L., 1979, 264 pp.

[17] M. R. Izadpanah, H. Müller-Steinhagen, M. Jamialahmadi, “Experimental and theoretical studies of convective heat transfer in a cylindrical porous medium”, International Journal of Heat and Fluid Flow, 19 (1998), 629–635 | DOI

[18] I. N. Sneddon, Preobrazovanie Fure, IL, M., 1955, 667 pp.

[19] Ya. Didushinskii, Osnovy proektirovaniya kataliticheskikh reaktorov, Khimiya, M., 1972, 376 pp.

[20] C. T. Hsu, P. Cheng, “Thermal dispersion in porous medium”, Int. J. Heat Mass Transfer, 33:8 (1990), 1587–1597 | DOI | Zbl

[21] L. Ziolkowska, I. Badowska, B. Flejter, Z. Mieskowski, “Wplyw wysokosci warstwy zloza na profil predkosci w rurze z wypelnieniem ziarnistym”, Inzynieria chemiczna i procesowa, 1:2 (1980), 393–405

[22] R. Newell, N. Standish, “Velocity distribution in rectangular pached beds and non-ferrous blast furnaces”, Metallurgical Transactions, 4:8 (1973), 1851–1857 | DOI

[23] C. E. Schwartz, J. M. Smith, “Flow distribution in packed beds”, Ind. and Eng. Chem., 45:6 (1953), 1209–1218 | DOI

[24] A. Pushnov, P. Baltrenas, A. Kagan, A. Zagorskis, Aerodinamika vozdukhoochistnykh ustroistv s zernistym sloem, Tekhnika, Vilnyus, 2010, 348 pp.