Keywords: velocity field heterogeneity, porosity, permeability, atmospheric air.
@article{VTGU_2021_70_a9,
author = {O. N. Filimonova and A. A. Vorobyov and A. S. Vikulin},
title = {Estimation of heterogeneity of the atmospheric air velocity field in adsorbers of front-end purification units for air separation plants},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {117--126},
year = {2021},
number = {70},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2021_70_a9/}
}
TY - JOUR AU - O. N. Filimonova AU - A. A. Vorobyov AU - A. S. Vikulin TI - Estimation of heterogeneity of the atmospheric air velocity field in adsorbers of front-end purification units for air separation plants JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2021 SP - 117 EP - 126 IS - 70 UR - http://geodesic.mathdoc.fr/item/VTGU_2021_70_a9/ LA - ru ID - VTGU_2021_70_a9 ER -
%0 Journal Article %A O. N. Filimonova %A A. A. Vorobyov %A A. S. Vikulin %T Estimation of heterogeneity of the atmospheric air velocity field in adsorbers of front-end purification units for air separation plants %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2021 %P 117-126 %N 70 %U http://geodesic.mathdoc.fr/item/VTGU_2021_70_a9/ %G ru %F VTGU_2021_70_a9
O. N. Filimonova; A. A. Vorobyov; A. S. Vikulin. Estimation of heterogeneity of the atmospheric air velocity field in adsorbers of front-end purification units for air separation plants. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 70 (2021), pp. 117-126. http://geodesic.mathdoc.fr/item/VTGU_2021_70_a9/
[1] P. Singla, K. Chowdhury, “Comparisons of thermodynamic and economic performances of cryogenic air separation plants designed for external and internal compression of oxygen”, Applied Thermal Engineering, 160 (2019), 114025 | DOI
[2] G. V. Brigagão, J. L. de Medeiros, O. Q. Araújo, “A novel cryogenic vapor-recompression air separation unit integrated to oxyfuel combined-cycle gas-to-wire plant with carbon dioxide enhanced oil recovery”, Energy Conversion and Management, 189 (2019), 202–214 | DOI
[3] M. Suzuki, Adsorption Engineering, Kodansha Ltg, Tokya, 1990, 278 pp.
[4] D. P. Nolan, Handbook of fire and explosion protection engineering principles for oil, gas, chemical and related facilities, William Andrew, NY, 2014, 487 pp.
[5] J. Toth, Adsorption: Theory, Modeling, Analysis, Marcel Dekker, Inc., NY, 2001, 880 pp.
[6] D. A. Nield, A. Bejan, Convection in Porous Media, Springer, NY, 2006, 654 pp. | Zbl
[7] I. V. Kornilov, Yu. E. Petrov, I. I. Sagadatov, I. Kh. Tagirov, P. O. Yapryntsev, Avtotekhnicheskoe i elektrogazovoe obespechenie aviatsionnykh chastei, UGATU, Ufa, 2016, 130 pp.
[8] G. I. Bumagin, E. I. Rogalskii, L. V. Popov, “Avtomobilnaya mnogotselevaya vozdukhorazdelitelnaya ustanovka AKDS-100 novogo pokoleniya”, Tekhnicheskie gazy, 2008, no. 1, 48–51
[9] E. Yu. Tarasova, “Novye resheniya, vysokaya effektivnost: opyt sozdaniya VRU KDADAR18/14”, Tekhnicheskie gazy, 2011, no. 6, 2–8
[10] A. M. Arkharov i dr., Kriogennye sistemy, v. 2, Osnovy proektirovaniya apparatov, ustanovok i sistem, Mashinostroenie, M., 1999, 720 pp.
[11] N. B. Vargaftik, Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei, Nauka, M., 1972, 721 pp.
[12] T. Lai, X. Liu, S. Xue, J. Xu, M. He, Y. Zhang, “Extension of Ergun equation for the calculation of the flow resistance in porous media with higher porosity andopen-celled structure”, Applied Thermal Engineering, 173 (2020), 115262 | DOI
[13] B. Alazmi, K. Vafai, “Analysis of variable porosity, thermal dispersion, and local thermal nonequilibrium on free surface flows through porous media”, Journal of Heat Transfer, 126:3 (2004), 389–399 | DOI
[14] V. I. Ryazhskikh, D. A. Konovalov, M. I. Slyusarev, I. G. Drozdov, “Analiz matematicheskoi modeli teplos'ema s ploskoi poverkhnostyu laminarno dvizhuschimsya khladagentom cherez sopryazhennuyu poristuyu sredu”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, 2:3 (2016), 68–81
[15] T. Bühber, D. A. Salamon, Functional analysis, American Mathematical Society, NY, 2018, 482 pp.
[16] Dzh. Konnor, K. Brebbia, Metod konechnykh elementov v mekhanike zhidkosti, Sudostroenie, L., 1979, 264 pp.
[17] M. R. Izadpanah, H. Müller-Steinhagen, M. Jamialahmadi, “Experimental and theoretical studies of convective heat transfer in a cylindrical porous medium”, International Journal of Heat and Fluid Flow, 19 (1998), 629–635 | DOI
[18] I. N. Sneddon, Preobrazovanie Fure, IL, M., 1955, 667 pp.
[19] Ya. Didushinskii, Osnovy proektirovaniya kataliticheskikh reaktorov, Khimiya, M., 1972, 376 pp.
[20] C. T. Hsu, P. Cheng, “Thermal dispersion in porous medium”, Int. J. Heat Mass Transfer, 33:8 (1990), 1587–1597 | DOI | Zbl
[21] L. Ziolkowska, I. Badowska, B. Flejter, Z. Mieskowski, “Wplyw wysokosci warstwy zloza na profil predkosci w rurze z wypelnieniem ziarnistym”, Inzynieria chemiczna i procesowa, 1:2 (1980), 393–405
[22] R. Newell, N. Standish, “Velocity distribution in rectangular pached beds and non-ferrous blast furnaces”, Metallurgical Transactions, 4:8 (1973), 1851–1857 | DOI
[23] C. E. Schwartz, J. M. Smith, “Flow distribution in packed beds”, Ind. and Eng. Chem., 45:6 (1953), 1209–1218 | DOI
[24] A. Pushnov, P. Baltrenas, A. Kagan, A. Zagorskis, Aerodinamika vozdukhoochistnykh ustroistv s zernistym sloem, Tekhnika, Vilnyus, 2010, 348 pp.