Finite strains of nonlinear elastic anisotropic materials
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 70 (2021), pp. 103-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Anisotropic materials with the symmetry of elastic properties inherent in crystals of cubic syngony are considered. Cubic materials are close to isotropic ones by their mechanical properties. For a cubic material, the elasticity tensor written in an arbitrary (laboratory) coordinate system, in the general case, has 21 non-zero components that are not independent. An experimental method is proposed for determining such a coordinate system, called canonical, in which a tensor of elastic properties includes only three nonzero independent constants. The nonlinear model of the mechanical behavior of cubic materials is developed, taking into account geometric and physical nonlinearities. The specific potential strain energy for a hyperelastic cubic material is written as a function of the tensor invariants, which are projections of the Cauchy-Green strain tensor into eigensubspaces of the cubic material. Expansions of elasticity tensors of the fourth and sixth ranks in tensor bases in eigensubspaces are determined for the cubic material. Relations between stresses and finite strains containing the second degree of deformations are obtained. The expressions for the stress tensor reflect the mutual influence of the processes occurring in various eigensubspaces of the material under consideration.
Keywords: anisotropy, hyperelasticity, finite strains, cubic materials, tensor bases
Mots-clés : invariants.
@article{VTGU_2021_70_a8,
     author = {M. Yu. Sokolova and D. V. Khristich},
     title = {Finite strains of nonlinear elastic anisotropic materials},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {103--116},
     year = {2021},
     number = {70},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_70_a8/}
}
TY  - JOUR
AU  - M. Yu. Sokolova
AU  - D. V. Khristich
TI  - Finite strains of nonlinear elastic anisotropic materials
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 103
EP  - 116
IS  - 70
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_70_a8/
LA  - ru
ID  - VTGU_2021_70_a8
ER  - 
%0 Journal Article
%A M. Yu. Sokolova
%A D. V. Khristich
%T Finite strains of nonlinear elastic anisotropic materials
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 103-116
%N 70
%U http://geodesic.mathdoc.fr/item/VTGU_2021_70_a8/
%G ru
%F VTGU_2021_70_a8
M. Yu. Sokolova; D. V. Khristich. Finite strains of nonlinear elastic anisotropic materials. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 70 (2021), pp. 103-116. http://geodesic.mathdoc.fr/item/VTGU_2021_70_a8/

[1] Sirotin Yu. I., Shaskolskaya M. P., Osnovy kristallofiziki, Nauka, M., 1979, 639 pp.

[2] Lekhnitskii S. G., Teoriya uprugosti anizotropnogo tela, Nauka, M., 1977, 416 pp.

[3] Chernykh K. F., Vvedenie v anizotropnuyu uprugost, Nauka, M., 1988, 192 pp.

[4] Newnham R. E., Properties of Materials: Anisotropy, Symmetry, Structure, Oxford University Press, New York, 2005, 391 pp.

[5] Xiao H., “A new representation theorem for elastic constitutive equations of cubic crystals”, Journal of Elasticity, 53 (1999), 37–45 | DOI | Zbl

[6] Paszkiewicz T., Wolski S., “Elastic properties of cubic crystals: Every's versus Blackman's diagram”, Journal of Physics: Conference Series, 104 (2008) | DOI

[7] Knowles K. M., “The biaxial moduli of cubic materials subjected to an equi-biaxial elastic strain”, Journal of Elasticity, 124 (2016), 1–25 | DOI | Zbl

[8] Knowles K. M., Howie P. R., “The directional dependence of elastic stiffness and compliance shear coefficients and shear moduli in cubic materials”, Journal of Elasticity, 120 (2015), 87–108 | DOI | Zbl

[9] Norris A., “Poisson's Ratio in Cubic Materials”, Proceedings: Mathematical, Physical and Engineering Sciences, 462:2075 (2006), 3385–3405 | DOI | Zbl

[10] Duffy T., “Single-crystal elastic properties of minerals and related materials with cubic symmetry”, American Mineralogist, 103:6 (2018), 977–988 | DOI

[11] Sokolova M. Yu., Khristich D. V., “Programma eksperimentov po opredeleniyu tipa nachalnoi uprugoi anizotropii materiala”, Prikladnaya mekhanika i tekhnicheskaya fizika, 56:5 (2015), 205–213 | DOI | Zbl

[12] Wright T. W., “Bootstrap elasticity III: minimal nonlinear constitutive representation for cubic materials”, Journal of Elasticity, 120:1 (2015), 109–119 | DOI | Zbl

[13] Claiton J. D., Nonlinear Elastic and Inelastic Models for Shock Compression of Crystalline Solids, Springer, 2019, 452 pp.

[14] Kambouchev N., Fernandez J., Radovitzky R., “A poly convex model for materials with cubic symmetry”, Modelling and Simulation in Materials Science and Engineering, 15:5 (2007), 451–468 | DOI

[15] Kube C. N., Turner J. A., “Estimates of Nonlinear Elastic Constants and Acoustic Nonlinearity Parameters for Textured Polycrystals”, Journal of Elasticity, 122:2 (2016), 157177 | DOI

[16] Markin A. A., Sokolova M. Yu., Termomekhanika uprugoplasticheskogo deformirovaniya, Fizmatlit, M., 2013, 320 pp.

[17] Sokolova M. Yu., Khristich D. V., “O simmetrii termouprugikh svoistv kvazikristallov”, Prikladnaya matematika i mekhanika, 78:5 (2014), 728–734 | Zbl

[18] Kozlov V. V., Markin A. A., “Aprobatsiya opredelyayuschikh sootnoshenii nelineinoi teorii uprugosti pri osevom sdvige pologo tsilindra”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 63, 102–114 | DOI

[19] Rykhlevskii Ya., “O zakone Guka”, Prikladnaya matematika i mekhanika, 48:3 (1984), 420–435

[20] Mehrabadi M. M., Cowin S. C., “Eigentensors of linear anisotropic elastic materials”, The Quarterly Journal of Mechanics and Applied Mathematics, 44:2 (1991), 331 | DOI

[21] Ostrosablin N. I., “Ob uravneniyakh lineinoi teorii uprugosti”, Prikladnaya mekhanika i tekhnicheskaya fizika, 1992, no. 3, 131–140