Mots-clés : stress triaxiality.
@article{VTGU_2021_70_a7,
author = {V. V. Skripnyak and K. V. Iokhim and V. A. Skripnyak},
title = {Localization of plastic deformation in commercially pure titanium in a complex stress state under high-speed tension},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {89--102},
year = {2021},
number = {70},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2021_70_a7/}
}
TY - JOUR AU - V. V. Skripnyak AU - K. V. Iokhim AU - V. A. Skripnyak TI - Localization of plastic deformation in commercially pure titanium in a complex stress state under high-speed tension JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2021 SP - 89 EP - 102 IS - 70 UR - http://geodesic.mathdoc.fr/item/VTGU_2021_70_a7/ LA - ru ID - VTGU_2021_70_a7 ER -
%0 Journal Article %A V. V. Skripnyak %A K. V. Iokhim %A V. A. Skripnyak %T Localization of plastic deformation in commercially pure titanium in a complex stress state under high-speed tension %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2021 %P 89-102 %N 70 %U http://geodesic.mathdoc.fr/item/VTGU_2021_70_a7/ %G ru %F VTGU_2021_70_a7
V. V. Skripnyak; K. V. Iokhim; V. A. Skripnyak. Localization of plastic deformation in commercially pure titanium in a complex stress state under high-speed tension. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 70 (2021), pp. 89-102. http://geodesic.mathdoc.fr/item/VTGU_2021_70_a7/
[1] R. Naseri, M. Kadkhodayan, M. Shariati, “Static mechanical properties and ductility of biomedical ultrafine-grained commercially pure titanium produced by ECAP process”, Transactions of Nonferrous Metals Society of China, 27:9 (2017), 1964–1975 | DOI
[2] R. W. Fonda, K. E. Knipling, A. J. Levinson, C. R. Feng, “Enhancing the weldability of CP titanium friction stir welds with elemental foils”, Science and Technology of Welding and Joining, 2019, 1–7 | DOI
[3] W. Y. Li, T. Ma, J. Li, “Numerical simulation of linear friction welding of titanium alloy: Effects of processing parameters”, Materials Design, 31:3 (2010), 1497–1507 | DOI
[4] X. Y. Wang, W. Y. Li, T. J. Ma, A. Vairis, “Characterization studies of linear friction welded titanium joints”, Materials Design, 116 (2017), 115–126 | DOI
[5] Yu. P. Sharkeev, E. V. Legostaeva, V. P. Vavilov, V. A. Skripnyak, O. A. Belyavskaya, A. Yu. Eroshenko, I. A. Glukhov, A. A. Chulkov, A. A. Kozulin, V. V. Skripnyak, “Regular features of stage formation in the stress strain curves and microstructure in the zone of fracture of coarsegrained and ultrafine-grained titanium and zirconium alloys”, Russian Physics Journal, 62:8 (2019), 1349–1356 | DOI
[6] Y. Sharkeev, V. Vavilov, V. A. Skripnyak, O. Belyavskaya, E. Legostaeva, A. Kozulin, A. Chulkov, A. Sorokoletov, V. V. Skripnyak, A. Eroshenko, M. Kuimova, “Analyzing the deformation and fracture of bioinert titanium, zirconium and niobium alloys in different structural states by the use of infrared thermography”, Metals, 8:9 (2018) | DOI
[7] Y. P. Sharkeev, V. P. Vavilov, O. A. Belyavskaya, V. A. Skripnyak, D. A. Nesteruk, A. A. Kozulin, V. M. Kim, “Analyzing deformation and damage of VT1-0 titanium in different structural states by using infrared thermography”, Journal of Nondestructive Evaluation, 35 (2016) | DOI
[8] V. A. Skripnyak, N. V. Skripnyak, E. G. Skripnyak, V. V. Skripnyak, “Influence of grain size distribution on the mechanical behavior of light alloys in wide range of strain rates”, Proc. AIP Conf, 1793 (2017) | DOI
[9] H. J. Frost, M. F. Ashby, Deformation-Mechanism Maps, Pergamon Press, Oxford, UK, 1982
[10] M.-S. Lee, Y.-T. Hyun, T.-S. Jun, “Global and local strain rate sensitivity of commercially pure titanium”, Journal of Alloys and Compounds, 803 (2019), 711–720 | DOI
[11] N. Srinivasan, R. Velmurugan, R. Kumar, S. K. Singh, B. Pant, “Deformation behavior of commercially pure (CP) titanium under equi-biaxial tension”, Materials Science and Engineering: A, 674 (2016), 540–551 | DOI
[12] J. Zhai, T. Luo, X. Gao, S. M. Graham, E. Knudsen, “Modeling the ductile damage process in commercially pure titanium”, International Journal of Solids and Structure, 91 (2016), 26–45 | DOI
[13] S. Tu, X. Ren, J. He, Z. Zhang, “Stress-strain curves of metallic materials and post-necking strain hardening characterization: A review”, Fatigue Fracture of Engineering Materials Structures, 2019, 1–17 | DOI
[14] D. R. Chichili, K. T. Ramesh, K. J. Hemker, “The high-strain-rate response of alpha-titanium: experiments, deformation mechanisms and modeling”, Acta Materialia, 46:3 (1998), 1025–1043 | DOI
[15] M. A. Meyers, G. Subhash, B. K. Kad, L. Prasad, “Evolution of microstructure and shear-band formation in $\alpha$-hcp titanium”, Mechanics of Materials, 17:2–3 (1994), 175–193 | DOI
[16] Q. Luan, T. B. Britton, T. S. Jun, “Strain rate sensitivity in commercial pure titanium: The competition between slip and deformation twinning”, Materials Science and Engineering A, 734 (2018), 385–397 | DOI
[17] Huang W, X. Zan, X. Nie, M. Gong, Y. Wang, Y. Xia, “Experimental study on the dynamic tensile behavior of a polycrystal pure titanium at elevated temperatures”, Materials Science and Engineering: A, 443 (2007), 33–41 | DOI
[18] V. V. Skripnyak, E. G. Skripnyak, V. A. Skripnyak, “Fracture of titanium alloys at high strain rates and under stress triaxiality”, Metals, 10:3 (2020), 305–24, 305 | DOI
[19] V. V. Skripnyak, A. A. Kozulin, V. A. Skripnyak, “The influence of stress triaxiality on ductility of titanium alloy in a wide range of strain rates”, Materials Physics and Mechanics, 42:4 (2019), 415–422 | DOI
[20] Y. Bai, T. Wierzbicki, “A new model of metal plasticity and fracture with pressure and Lode dependence”, International Journal of Plasticity, 24 (2008), 1071–1096 | DOI | Zbl
[21] Y. Bai, X. Teng, T. Wierzbicki, “On the application of stress triaxiality formula for plane strain fracture testing”, Journal of Engineering Materials and Technology, 131 (2009), 021002 | DOI
[22] J. Blaber, B. Adair, A. A. Ncorr, “Open-Source 2D Digital Image Correlation Matlab Software”, Experimantal Mechanics, 55 (2015), 1105–1122 | DOI
[23] G. Zheng, B. Tang, Q. Zhou, X. Mao, R. Dang, “Development of a flow localization band and texture in a forged near-$\alpha$ titanium alloy”, Metals, 10 (2020) | DOI
[24] D. Lindner, F. Mathieu, F. Hild, O. Allix, C. H. Minh, O. Paulien-Camy, “On the evaluation of stress triaxiality fields in a notched titanium alloy sample via integrated digital image correlation”, Journal of Applied Mechanics, 82 (2015), 071014 | DOI