Localization of plastic deformation in commercially pure titanium in a complex stress state under high-speed tension
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 70 (2021), pp. 89-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, the effect of a triaxiality stress state on the mechanical behavior and fracture of commercially pure titanium VT1-0 (Grade 2) in the range of strain rates from $0.1$ to $1000$ s$^{-1}$ is studied. Tensile tests are carried out using a servo-hydraulic testing machine Instron VHS 40 / 5020 on flat specimens with a constant cross-sectional area and on flat specimens with a notch. To study the effect of the complex stress state on the ultimate deformation before fracture, the samples with the notch of various radii ($10$, $5$, $2.5$ mm) are used in the experiments. Phantom V711 is employed for high-speed video registration of specimen's deformation. Deformation fields in a working part of the sample are investigated by the digital image correlation method. It is shown that the effect of the strain rate on the ultimate deformations before fracture has a nonmonotonic behavior. An analysis of strain fields in the working part of the samples shows that the degree of uniform deformation of the working part decreases with an increase in the strain rate. At strain rates above $1000$ s$^{-1}$, the shear bands occur at the onset of a plastic flow. Commercially pure titanium undergoes fracture due to the nucleation, growth, and coalescence of damages in the bands of localized plastic deformation oriented along the maximum shear stresses. The results confirm that the fracture of commercially pure titanium exhibits ductile behavior at strain rates varying from $0.1$ to $1000$ s$^{-1}$, at a triaxiality stress parameter in the range of $0.333 \leqslant \eta <0.467$, and at a temperature close to $295$ K.
Keywords: localization of plastic deformation, commercially pure titanium, high strain rate, mechanical behavior
Mots-clés : stress triaxiality.
@article{VTGU_2021_70_a7,
     author = {V. V. Skripnyak and K. V. Iokhim and V. A. Skripnyak},
     title = {Localization of plastic deformation in commercially pure titanium in a complex stress state under high-speed tension},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {89--102},
     year = {2021},
     number = {70},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_70_a7/}
}
TY  - JOUR
AU  - V. V. Skripnyak
AU  - K. V. Iokhim
AU  - V. A. Skripnyak
TI  - Localization of plastic deformation in commercially pure titanium in a complex stress state under high-speed tension
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 89
EP  - 102
IS  - 70
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_70_a7/
LA  - ru
ID  - VTGU_2021_70_a7
ER  - 
%0 Journal Article
%A V. V. Skripnyak
%A K. V. Iokhim
%A V. A. Skripnyak
%T Localization of plastic deformation in commercially pure titanium in a complex stress state under high-speed tension
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 89-102
%N 70
%U http://geodesic.mathdoc.fr/item/VTGU_2021_70_a7/
%G ru
%F VTGU_2021_70_a7
V. V. Skripnyak; K. V. Iokhim; V. A. Skripnyak. Localization of plastic deformation in commercially pure titanium in a complex stress state under high-speed tension. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 70 (2021), pp. 89-102. http://geodesic.mathdoc.fr/item/VTGU_2021_70_a7/

[1] R. Naseri, M. Kadkhodayan, M. Shariati, “Static mechanical properties and ductility of biomedical ultrafine-grained commercially pure titanium produced by ECAP process”, Transactions of Nonferrous Metals Society of China, 27:9 (2017), 1964–1975 | DOI

[2] R. W. Fonda, K. E. Knipling, A. J. Levinson, C. R. Feng, “Enhancing the weldability of CP titanium friction stir welds with elemental foils”, Science and Technology of Welding and Joining, 2019, 1–7 | DOI

[3] W. Y. Li, T. Ma, J. Li, “Numerical simulation of linear friction welding of titanium alloy: Effects of processing parameters”, Materials Design, 31:3 (2010), 1497–1507 | DOI

[4] X. Y. Wang, W. Y. Li, T. J. Ma, A. Vairis, “Characterization studies of linear friction welded titanium joints”, Materials Design, 116 (2017), 115–126 | DOI

[5] Yu. P. Sharkeev, E. V. Legostaeva, V. P. Vavilov, V. A. Skripnyak, O. A. Belyavskaya, A. Yu. Eroshenko, I. A. Glukhov, A. A. Chulkov, A. A. Kozulin, V. V. Skripnyak, “Regular features of stage formation in the stress strain curves and microstructure in the zone of fracture of coarsegrained and ultrafine-grained titanium and zirconium alloys”, Russian Physics Journal, 62:8 (2019), 1349–1356 | DOI

[6] Y. Sharkeev, V. Vavilov, V. A. Skripnyak, O. Belyavskaya, E. Legostaeva, A. Kozulin, A. Chulkov, A. Sorokoletov, V. V. Skripnyak, A. Eroshenko, M. Kuimova, “Analyzing the deformation and fracture of bioinert titanium, zirconium and niobium alloys in different structural states by the use of infrared thermography”, Metals, 8:9 (2018) | DOI

[7] Y. P. Sharkeev, V. P. Vavilov, O. A. Belyavskaya, V. A. Skripnyak, D. A. Nesteruk, A. A. Kozulin, V. M. Kim, “Analyzing deformation and damage of VT1-0 titanium in different structural states by using infrared thermography”, Journal of Nondestructive Evaluation, 35 (2016) | DOI

[8] V. A. Skripnyak, N. V. Skripnyak, E. G. Skripnyak, V. V. Skripnyak, “Influence of grain size distribution on the mechanical behavior of light alloys in wide range of strain rates”, Proc. AIP Conf, 1793 (2017) | DOI

[9] H. J. Frost, M. F. Ashby, Deformation-Mechanism Maps, Pergamon Press, Oxford, UK, 1982

[10] M.-S. Lee, Y.-T. Hyun, T.-S. Jun, “Global and local strain rate sensitivity of commercially pure titanium”, Journal of Alloys and Compounds, 803 (2019), 711–720 | DOI

[11] N. Srinivasan, R. Velmurugan, R. Kumar, S. K. Singh, B. Pant, “Deformation behavior of commercially pure (CP) titanium under equi-biaxial tension”, Materials Science and Engineering: A, 674 (2016), 540–551 | DOI

[12] J. Zhai, T. Luo, X. Gao, S. M. Graham, E. Knudsen, “Modeling the ductile damage process in commercially pure titanium”, International Journal of Solids and Structure, 91 (2016), 26–45 | DOI

[13] S. Tu, X. Ren, J. He, Z. Zhang, “Stress-strain curves of metallic materials and post-necking strain hardening characterization: A review”, Fatigue Fracture of Engineering Materials Structures, 2019, 1–17 | DOI

[14] D. R. Chichili, K. T. Ramesh, K. J. Hemker, “The high-strain-rate response of alpha-titanium: experiments, deformation mechanisms and modeling”, Acta Materialia, 46:3 (1998), 1025–1043 | DOI

[15] M. A. Meyers, G. Subhash, B. K. Kad, L. Prasad, “Evolution of microstructure and shear-band formation in $\alpha$-hcp titanium”, Mechanics of Materials, 17:2–3 (1994), 175–193 | DOI

[16] Q. Luan, T. B. Britton, T. S. Jun, “Strain rate sensitivity in commercial pure titanium: The competition between slip and deformation twinning”, Materials Science and Engineering A, 734 (2018), 385–397 | DOI

[17] Huang W, X. Zan, X. Nie, M. Gong, Y. Wang, Y. Xia, “Experimental study on the dynamic tensile behavior of a polycrystal pure titanium at elevated temperatures”, Materials Science and Engineering: A, 443 (2007), 33–41 | DOI

[18] V. V. Skripnyak, E. G. Skripnyak, V. A. Skripnyak, “Fracture of titanium alloys at high strain rates and under stress triaxiality”, Metals, 10:3 (2020), 305–24, 305 | DOI

[19] V. V. Skripnyak, A. A. Kozulin, V. A. Skripnyak, “The influence of stress triaxiality on ductility of titanium alloy in a wide range of strain rates”, Materials Physics and Mechanics, 42:4 (2019), 415–422 | DOI

[20] Y. Bai, T. Wierzbicki, “A new model of metal plasticity and fracture with pressure and Lode dependence”, International Journal of Plasticity, 24 (2008), 1071–1096 | DOI | Zbl

[21] Y. Bai, X. Teng, T. Wierzbicki, “On the application of stress triaxiality formula for plane strain fracture testing”, Journal of Engineering Materials and Technology, 131 (2009), 021002 | DOI

[22] J. Blaber, B. Adair, A. A. Ncorr, “Open-Source 2D Digital Image Correlation Matlab Software”, Experimantal Mechanics, 55 (2015), 1105–1122 | DOI

[23] G. Zheng, B. Tang, Q. Zhou, X. Mao, R. Dang, “Development of a flow localization band and texture in a forged near-$\alpha$ titanium alloy”, Metals, 10 (2020) | DOI

[24] D. Lindner, F. Mathieu, F. Hild, O. Allix, C. H. Minh, O. Paulien-Camy, “On the evaluation of stress triaxiality fields in a notched titanium alloy sample via integrated digital image correlation”, Journal of Applied Mechanics, 82 (2015), 071014 | DOI