Geometric modeling of a shape of parallelogram plates in a problem of free vibrations using conformal radii
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 70 (2021), pp. 143-159 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers a method of geometric modeling applied when solving basic twodimensional problems of the theory of elasticity and structural mechanics, in particular the applied problems of engineering. The subject of this study is vibrations of thin elastic parallelogram plates of constant thickness. To determine a basic frequency of vibrations, the interpolation method based on the geometric characteristic of the shape of plates (membrane, cross sections of a rod) is proposed. This characteristic represents a ratio of interior and exterior conformal radii of the plate. As is known from the theory of conformal mappings, conformal radii are those obtained by mapping of a plate onto the interior and exterior of a unit disk. The paper presents basic terms, tables, and formulas related to the considered geometric method with a comparative analysis of the curve diagrams obtained using various interpolation formulas. The original computer program is also developed. The main advantage of the proposed method of determining the basic frequency of plate vibrations is a graphic representation of results that allows one to accurately determine the required solution on the graph among the other solutions corresponding to the considered case of parallelogram plates. Although there are many known approximate approaches, which are used to solve the considered problems, only geometric modeling technique based on the conformal radii ratio gives such an opportunity.
Keywords: geometric modeling, parallelogram plates, free vibrations
Mots-clés : conformal radii.
@article{VTGU_2021_70_a11,
     author = {A. A. Chernyaev},
     title = {Geometric modeling of a shape of parallelogram plates in a problem of free vibrations using conformal radii},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {143--159},
     year = {2021},
     number = {70},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_70_a11/}
}
TY  - JOUR
AU  - A. A. Chernyaev
TI  - Geometric modeling of a shape of parallelogram plates in a problem of free vibrations using conformal radii
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 143
EP  - 159
IS  - 70
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_70_a11/
LA  - ru
ID  - VTGU_2021_70_a11
ER  - 
%0 Journal Article
%A A. A. Chernyaev
%T Geometric modeling of a shape of parallelogram plates in a problem of free vibrations using conformal radii
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 143-159
%N 70
%U http://geodesic.mathdoc.fr/item/VTGU_2021_70_a11/
%G ru
%F VTGU_2021_70_a11
A. A. Chernyaev. Geometric modeling of a shape of parallelogram plates in a problem of free vibrations using conformal radii. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 70 (2021), pp. 143-159. http://geodesic.mathdoc.fr/item/VTGU_2021_70_a11/

[1] Korobko V. I., Korobko A. V., Kolichestvennaya otsenka simmetrii, Izd-vo ASV, M., 2008, 128 pp.

[2] Korobko V. I., Korobko A. V., Stroitelnaya mekhanika plastinok: Tekhnicheskaya teoriya, Spektr, M., 2010, 410 pp.

[3] Rozin L. A., Zadachi teorii uprugosti i chislennye metody ikh resheniya, SPbGPU, SPb., 1998, 260 pp.

[4] Korobko A. V., Issledovanie napryazhenno-deformirovannogo sostoyaniya kosougolnykh plastinok, membran i sechenii geometricheskimi metodami, dis. ... kand. tekhn. nauk: 05.23.17, Dnepropetrovsk, 1993, 153 pp.

[5] Korobko V. I., Izoperimetricheskii metod v stroitelnoi mekhanike: Teoreticheskie osnovy izoperimetricheskogo metoda, Izd-vo ASV, M., 1997, 390 pp.

[6] Korobko A. V., Geometricheskoe modelirovanie formy oblasti v dvumernykh zadachakh teorii uprugosti, Izd-vo ASV, M., 1999, 320 pp.

[7] Korobko V. I., Korobko A. V., Savin S. Yu., Chernyaev A. A., “Osnovnye etapy razvitiya geometricheskikh metodov resheniya dvumernykh zadach teorii uprugosti i stroitelnoi mekhaniki plastinok”, Nauchnoe obozrenie. Tekhnicheskie nauki, 2016, no. 3, 54–69

[8] Polia G., Sege G., Izoperimetricheskie neravenstva v matematicheskoi fizike, KomKniga, M., 2006, 336 pp.

[9] Driscoll T. A., Trefethen L. N., Schwarz–Christoffel Mapping, Cambridge University Press, 2002, 149 pp. | Zbl

[10] Korobko V. I., Chernyaev A. A., “Otnoshenie konformnykh radiusov — novyi argument geometricheskikh metodov resheniya dvumernykh zadach teorii uprugosti”, Vestnik otdeleniya stroitelnykh nauk RAASN, 1:16 (2012), 149–161

[11] Korobko A., Chernyaev A., Korobko V., “Determination of basic dynamic vibration frequency at trapezoid plates using conformal radius ratio interpolation technique”, Procedia Engineering, 206 (2017), 25–30 | DOI

[12] Chernyaev A. A., “Isoperimetric solution to problem of prismatic bar torsion”, IOP Conference Series: Earth and Environmental Science, 87 (2017), 082009 | DOI

[13] Korobko V. I., Korobko A. V., Savin S. Y., Chernyaev A. A., “Solving the transverse bending problem of thin elastic orthotropic plates with form factor interpolation method”, Journal of the Serbian Society for Computational Mechanics, 10:2 (2016), 9–17 | DOI

[14] Chernyaev A. A., Razvitie metoda interpolyatsii po otnosheniyu konformnykh radiusov dlya resheniya zadach poperechnogo izgiba plastinok, dis. ... kand. tekhn. nauk: 05.23.17, Orel, 2013, 211 pp. | Zbl

[15] Ivanov V. I., Popov V. Yu., Konformnye otobrazheniya i ikh prilozheniya, Editorial URSS, M., 2002, 324 pp.

[16] Kazantsev V. P., Zolotov O. A., Dolgopolova M. V., “Elektrostatika na ploskosti. Normirovka potentsiala. Emkosti uedinennogo provodnika i linii otnositelno tochki. Konformnye radiusy”, Vestnik Krasnoyarskogo gosudarstvennogo universiteta. Seriya: fiziko-matematicheskie nauki, 2005, no. 1, 32–38

[17] Korobko A. V., Chernyaev A. A., “Opredelenie maksimalnogo progiba pri poperechnom izgibe parallelogrammnykh plastinok s ispolzovaniem otnosheniya konformnykh radiusov”, Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2013, no. 2, 19–22

[18] Vlasov V. I., Paltsev A. B., “Analitiko-chislennyi metod konformnogo otobrazheniya slozhnykh oblastei”, Doklady Akademii nauk, 429:1 (2009), 12–14 | Zbl

[19] Korobko A. V., Chernyaev A. A., “Opredelenie osnovnoi chastoty svobodnykh kolebanii plastinok s ispolzovaniem konformnykh radiusov”, Stroitelstvo i rekonstruktsiya, 2011, no. 1, 12–8

[20] Mazya V. G., Nazarov S. A., “Paradoksy predelnogo perekhoda v resheniyakh kraevykh zadach pri approksimatsii gladkikh oblastei mnogougolnymi”, Izvestiya akademii nauk SSSR. Seriya matematicheskaya, 50:6 (1986), 1156–1177

[21] Chernyaev A., “Improving the accuracy of geometric interpolation for determining fundamental frequency of parallelogram plates vibration”, Procedia Engineering, 206 (2017), 31–34 | DOI

[22] SCAD Office. Ofitsialnyi sait razrabotchikov, (data obrascheniya: 02.09.2019) http://scadsoft.com/