Mots-clés : exact solution, Poisson equation
@article{VTGU_2021_70_a10,
author = {A. D. Chernyshov and V. V. Goryainov and S. F. Kuznetsov and O. Yu. Nikiforova},
title = {Application of fast expansions to obtain exact solutions to a problem on rectangular membrane deflection under alternating load},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {127--142},
year = {2021},
number = {70},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2021_70_a10/}
}
TY - JOUR AU - A. D. Chernyshov AU - V. V. Goryainov AU - S. F. Kuznetsov AU - O. Yu. Nikiforova TI - Application of fast expansions to obtain exact solutions to a problem on rectangular membrane deflection under alternating load JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2021 SP - 127 EP - 142 IS - 70 UR - http://geodesic.mathdoc.fr/item/VTGU_2021_70_a10/ LA - ru ID - VTGU_2021_70_a10 ER -
%0 Journal Article %A A. D. Chernyshov %A V. V. Goryainov %A S. F. Kuznetsov %A O. Yu. Nikiforova %T Application of fast expansions to obtain exact solutions to a problem on rectangular membrane deflection under alternating load %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2021 %P 127-142 %N 70 %U http://geodesic.mathdoc.fr/item/VTGU_2021_70_a10/ %G ru %F VTGU_2021_70_a10
A. D. Chernyshov; V. V. Goryainov; S. F. Kuznetsov; O. Yu. Nikiforova. Application of fast expansions to obtain exact solutions to a problem on rectangular membrane deflection under alternating load. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 70 (2021), pp. 127-142. http://geodesic.mathdoc.fr/item/VTGU_2021_70_a10/
[1] A. D. Polyanin, Spravochnik po lineinym uravneniyam matematicheskoi fiziki, Fizmatlit, M., 2001, 576 pp.
[2] A. Liemert, A. Kienle, “Exact solution of Poisson's equation with an elliptical boundary”, Applied Mathematics and Computation, 238 (2014), 123–131 | DOI | Zbl
[3] Zh. Zheng, W. Sun, X. Suo, L. L. P. Wong, J. T. W. Yeow, “A novel deflection shape function for rectangular capacitive micromachined ultrasonic transducer diaphragms”, Sensing and Bio-Sensing Research, 5 (2015), 62–70 | DOI
[4] S. P. Timoshenko, Dzh. Guder, Teoriya uprugosti, Nauka, M., 1979, 560 pp.
[5] V. I. Vanko, N. K. Kosakyan, “Sravnitelnyi analiz nekotorykh pryamykh metodov resheniya zadach matematicheskoi fiziki”, Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Matematika. Fizika, 50:2 (2018), 197–206 | DOI
[6] V. V. Vasilev, S. A. Lure, “Obobschennoe reshenie zadachi o krugloi membrane, nagruzhennoi sosredotochennoi siloi”, Izvestiya Rossiiskoi akademii nauk. Mekhanika tverdogo tela, 2016, no. 3, 115–118 | DOI
[7] L. I. Rubina, O. N. Ulyanov, “Ob odnom podkhode k resheniyu neodnorodnykh uravnenii v chastnykh proizvodnykh”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 27:3 (2017), 355–364 | DOI | Zbl
[8] O. D. Algazin, A. V. Kopaev, “Reshenie zadachi Dirikhle dlya uravneniya Puassona v mnogomernom beskonechnom sloe”, Matematika i matematicheskoe modelirovanie. MGTU im. N.E. Baumana. Elektron. zhurn., 2015, no. 4, 41–53 | DOI
[9] O. D. Algazin, “Polinomialnye resheniya kraevykh zadach dlya uravneniya Puassona v sloe”, Matematika i matematicheskoe modelirovanie, 2017, no. 06, 1–18 | DOI
[10] P. Ghadimi, A. Dashtimanesh, H. Hosseinzadeh, “Solution of Poisson's equation by analytical boundary element integration”, Applied Mathematics and Computation, 217:1 (2010), 152–163 | DOI | Zbl
[11] O. I. Yuldashev, M. B. Yuldasheva, “Granichnyi metod vzveshennykh nevyazok s razryvnymi bazisnymi funktsiyami dlya vysokotochnogo resheniya lineinykh kraevykh zadach s uravneniyami Laplasa i Puassona”, Vestnik RUDN. Seriya Matematika. Informatika. Fizika, 2013, no. 4, 143–153
[12] D. F. Pastukhov, Yu. F. Pastukhov, N. K. Volosova, “Minimalnaya raznostnaya skhema dlya uravneniya Puassona na parallelepipede s shestym poryadkom pogreshnosti”, Vestnik Polotskogo gosudarstvennogo universiteta. Seriya C. Fundamentalnye nauki, 2019, no. 4, 154–173
[13] V. I. Isaev, V. P. Shapeev, S. V. Idimeshev, “Varianty metoda kollokatsii i naimenshikh kvadratov povyshennoi tochnosti dlya chislennogo resheniya uravneniya Puassona”, Vychislitelnye tekhnologii, 16:1 (2011), 85–93 | Zbl
[14] E. V. Vorozhtsov, V. P. Shapeev, “Chislennoe reshenie uravneniya Puassona v polyarnykh koordinatakh metodom kollokatsii i naimenshikh nevyazok”, Modelirovanie i analiz informatsionnykh sistem, 22:5 (2015), 648–664 | DOI
[15] H. Zhong, Y. He, “Solution of Poisson and Laplace equations by quadrilateral quadrature element”, International Journal of Solids and Structures, 35:21 (1998), 2805–2819 | DOI | Zbl
[16] A. M. Elsherbeny, R. M.I. El-hassani, H. El-badry, M. I. Abdallah, “Solving 2D-Poisson equation using modified cubic B-spline differential quadrature method”, Ain Shams Engineering Journal, 9:4 (2018), 2879–2885 | DOI
[17] M. Ghasemi, “Spline-based DQM for multi-dimensional PDEs: Application to biharmonic and Poisson equations in 2D and 3D”, Computers Mathematics with Applications, 73:7 (2017), 1576–1592 | DOI | Zbl
[18] Z. Shi, Y.-y. Cao, Q.-j. Chen, “Solving 2D and 3D Poisson equations and biharmonic equations by the Haar wavelet method”, Applied Mathematical Modelling, 36:11 (2012), 5143–5161 | DOI | Zbl
[19] S. Cao, Y.-y. Zhi, “A spectral collocation method based on Haar wavelets for Poisson equations and biharmonic equations”, Mathematical and Computer Modelling, 54:11-12 (2011), 2858–2868 | DOI | Zbl
[20] A. M. Bubenchikov, V. S. Poponin, V. N. Melnikova, “Matematicheskaya postanovka i reshenie prostranstvennykh kraevykh zadach metodom spektralnykh elementov”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2008, no. 3 (4), 70–76
[21] A. D. Chernyshov, “Metod bystrykh razlozhenii dlya resheniya nelineinykh differentsialnykh uravnenii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 54:1 (2014), 13–24 | DOI | Zbl
[22] S. P. Timoshenko, S. Voinovskii-Kriger, Plastiny i obolochki, Nauka, M., 1966, 636 pp.
[23] P. G. Eremeev, Prostranstvennye tonkolistovye metallicheskie konstruktsii pokrytii, Izdatelstvo assotsiatsii stroitelnykh vuzov, M., 2006, 560 pp.
[24] http://www.vashdom.ru/snip/II-23-81/index-7.htm
[25] http://metallicheckiy-portal.ru/marki_metallov/stk/VSt3ps
[26] A. D. Chernyshov, V. M. Popov, V. V. Goryainov, O. V. Leshonkov, “Issledovanie kontaktnogo termicheskogo soprotivleniya v konechnom tsilindre s vnutrennim istochnikom metodom bystrykh razlozhenii i problema soglasovaniya granichnykh uslovii”, Inzhenerno-fizicheskii zhurnal, 90:5 (2017), 1288–1297
[27] A. D. Chernyshov, V. V. Goryainov, A. A. Danshin, “Analysis of the stress field in a wedge using the fast expansions with pointwise determined coefficients”, IOP Conf. Series: Journal of Physics: Conf. Series, 973 (2018), 012002 | DOI
[28] A. D. Chernyshov, V. V. Goryainov, “Reshenie odnogo nelineinogo integro-differentsialnogo uravneniya metodom bystrykh razlozhenii”, Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I.Ya. Yakovleva. Seriya: mekhanika predelnogo sostoyaniya, 2012, no. 4 (12), 105–112
[29] A. D. Chernyshov, V. V. Goryainov, O. A. Chernyshov, “Primenenie metoda bystrykh razlozhenii dlya rascheta traektorii kosmicheskikh korablei”, Izvestiya vuzov. Aviatsionnaya tekhnika, 2015, no. 2, 41–47
[30] A. D. Chernyshov, “Reshenie nelineinogo uravneniya teploprovodnosti dlya krivolineinoi oblasti s usloviyami Dirikhle metodom bystrykh razlozhenii”, Inzhenerno-fizicheskii zhurnal, 91:2 (2018), 456–468
[31] A. D. Chernyshov, “Metod rasshireniya granits dlya zadach teploprovodnosti v telakh podvizhnoi formy”, Inzhenerno-fizicheskii zhurnal, 83:5 (2010), 989–994