Application of fast expansions to obtain exact solutions to a problem on rectangular membrane deflection under alternating load
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 70 (2021), pp. 127-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of rectangular membrane deflection under alternating loads is solved in general terms by means of the method of fast expansions. The exact solution is represented by the finite expression borrowed from the theory of fast expansions as a sum of the boundary function and Fourier sine series with two Fourier coefficients taken into account. The obtained exact solution includes free parameters. Changing the values of these parameters, one can derive many new exact solutions. Obtaining of exact solutions to a problem of the rigidly fixed membrane under two types of loads (dome-shaped and sinusoidal) is shown as an example. Graphs of the dome-shaped and sinusoidal loads on the membrane and the curves of the corresponding deflections and stress components are presented in the paper. From the analysis of the exact solutions, it is obvious that only when a symmetrical alternating load is used, the membrane maximum deflection is attained in the center of the membrane, and the stresses reach the highest values in the middle of both long sides. In the case of a non-symmetrical load, the maximum stress occurs in the middle of either one of two long sides of the rectangular membrane, and the maximum deflection is found in the central region.
Keywords: membrane deflection, stress components, alternating load, fast expansions.
Mots-clés : exact solution, Poisson equation
@article{VTGU_2021_70_a10,
     author = {A. D. Chernyshov and V. V. Goryainov and S. F. Kuznetsov and O. Yu. Nikiforova},
     title = {Application of fast expansions to obtain exact solutions to a problem on rectangular membrane deflection under alternating load},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {127--142},
     year = {2021},
     number = {70},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_70_a10/}
}
TY  - JOUR
AU  - A. D. Chernyshov
AU  - V. V. Goryainov
AU  - S. F. Kuznetsov
AU  - O. Yu. Nikiforova
TI  - Application of fast expansions to obtain exact solutions to a problem on rectangular membrane deflection under alternating load
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 127
EP  - 142
IS  - 70
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_70_a10/
LA  - ru
ID  - VTGU_2021_70_a10
ER  - 
%0 Journal Article
%A A. D. Chernyshov
%A V. V. Goryainov
%A S. F. Kuznetsov
%A O. Yu. Nikiforova
%T Application of fast expansions to obtain exact solutions to a problem on rectangular membrane deflection under alternating load
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 127-142
%N 70
%U http://geodesic.mathdoc.fr/item/VTGU_2021_70_a10/
%G ru
%F VTGU_2021_70_a10
A. D. Chernyshov; V. V. Goryainov; S. F. Kuznetsov; O. Yu. Nikiforova. Application of fast expansions to obtain exact solutions to a problem on rectangular membrane deflection under alternating load. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 70 (2021), pp. 127-142. http://geodesic.mathdoc.fr/item/VTGU_2021_70_a10/

[1] A. D. Polyanin, Spravochnik po lineinym uravneniyam matematicheskoi fiziki, Fizmatlit, M., 2001, 576 pp.

[2] A. Liemert, A. Kienle, “Exact solution of Poisson's equation with an elliptical boundary”, Applied Mathematics and Computation, 238 (2014), 123–131 | DOI | Zbl

[3] Zh. Zheng, W. Sun, X. Suo, L. L. P. Wong, J. T. W. Yeow, “A novel deflection shape function for rectangular capacitive micromachined ultrasonic transducer diaphragms”, Sensing and Bio-Sensing Research, 5 (2015), 62–70 | DOI

[4] S. P. Timoshenko, Dzh. Guder, Teoriya uprugosti, Nauka, M., 1979, 560 pp.

[5] V. I. Vanko, N. K. Kosakyan, “Sravnitelnyi analiz nekotorykh pryamykh metodov resheniya zadach matematicheskoi fiziki”, Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Matematika. Fizika, 50:2 (2018), 197–206 | DOI

[6] V. V. Vasilev, S. A. Lure, “Obobschennoe reshenie zadachi o krugloi membrane, nagruzhennoi sosredotochennoi siloi”, Izvestiya Rossiiskoi akademii nauk. Mekhanika tverdogo tela, 2016, no. 3, 115–118 | DOI

[7] L. I. Rubina, O. N. Ulyanov, “Ob odnom podkhode k resheniyu neodnorodnykh uravnenii v chastnykh proizvodnykh”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 27:3 (2017), 355–364 | DOI | Zbl

[8] O. D. Algazin, A. V. Kopaev, “Reshenie zadachi Dirikhle dlya uravneniya Puassona v mnogomernom beskonechnom sloe”, Matematika i matematicheskoe modelirovanie. MGTU im. N.E. Baumana. Elektron. zhurn., 2015, no. 4, 41–53 | DOI

[9] O. D. Algazin, “Polinomialnye resheniya kraevykh zadach dlya uravneniya Puassona v sloe”, Matematika i matematicheskoe modelirovanie, 2017, no. 06, 1–18 | DOI

[10] P. Ghadimi, A. Dashtimanesh, H. Hosseinzadeh, “Solution of Poisson's equation by analytical boundary element integration”, Applied Mathematics and Computation, 217:1 (2010), 152–163 | DOI | Zbl

[11] O. I. Yuldashev, M. B. Yuldasheva, “Granichnyi metod vzveshennykh nevyazok s razryvnymi bazisnymi funktsiyami dlya vysokotochnogo resheniya lineinykh kraevykh zadach s uravneniyami Laplasa i Puassona”, Vestnik RUDN. Seriya Matematika. Informatika. Fizika, 2013, no. 4, 143–153

[12] D. F. Pastukhov, Yu. F. Pastukhov, N. K. Volosova, “Minimalnaya raznostnaya skhema dlya uravneniya Puassona na parallelepipede s shestym poryadkom pogreshnosti”, Vestnik Polotskogo gosudarstvennogo universiteta. Seriya C. Fundamentalnye nauki, 2019, no. 4, 154–173

[13] V. I. Isaev, V. P. Shapeev, S. V. Idimeshev, “Varianty metoda kollokatsii i naimenshikh kvadratov povyshennoi tochnosti dlya chislennogo resheniya uravneniya Puassona”, Vychislitelnye tekhnologii, 16:1 (2011), 85–93 | Zbl

[14] E. V. Vorozhtsov, V. P. Shapeev, “Chislennoe reshenie uravneniya Puassona v polyarnykh koordinatakh metodom kollokatsii i naimenshikh nevyazok”, Modelirovanie i analiz informatsionnykh sistem, 22:5 (2015), 648–664 | DOI

[15] H. Zhong, Y. He, “Solution of Poisson and Laplace equations by quadrilateral quadrature element”, International Journal of Solids and Structures, 35:21 (1998), 2805–2819 | DOI | Zbl

[16] A. M. Elsherbeny, R. M.I. El-hassani, H. El-badry, M. I. Abdallah, “Solving 2D-Poisson equation using modified cubic B-spline differential quadrature method”, Ain Shams Engineering Journal, 9:4 (2018), 2879–2885 | DOI

[17] M. Ghasemi, “Spline-based DQM for multi-dimensional PDEs: Application to biharmonic and Poisson equations in 2D and 3D”, Computers Mathematics with Applications, 73:7 (2017), 1576–1592 | DOI | Zbl

[18] Z. Shi, Y.-y. Cao, Q.-j. Chen, “Solving 2D and 3D Poisson equations and biharmonic equations by the Haar wavelet method”, Applied Mathematical Modelling, 36:11 (2012), 5143–5161 | DOI | Zbl

[19] S. Cao, Y.-y. Zhi, “A spectral collocation method based on Haar wavelets for Poisson equations and biharmonic equations”, Mathematical and Computer Modelling, 54:11-12 (2011), 2858–2868 | DOI | Zbl

[20] A. M. Bubenchikov, V. S. Poponin, V. N. Melnikova, “Matematicheskaya postanovka i reshenie prostranstvennykh kraevykh zadach metodom spektralnykh elementov”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2008, no. 3 (4), 70–76

[21] A. D. Chernyshov, “Metod bystrykh razlozhenii dlya resheniya nelineinykh differentsialnykh uravnenii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 54:1 (2014), 13–24 | DOI | Zbl

[22] S. P. Timoshenko, S. Voinovskii-Kriger, Plastiny i obolochki, Nauka, M., 1966, 636 pp.

[23] P. G. Eremeev, Prostranstvennye tonkolistovye metallicheskie konstruktsii pokrytii, Izdatelstvo assotsiatsii stroitelnykh vuzov, M., 2006, 560 pp.

[24] http://www.vashdom.ru/snip/II-23-81/index-7.htm

[25] http://metallicheckiy-portal.ru/marki_metallov/stk/VSt3ps

[26] A. D. Chernyshov, V. M. Popov, V. V. Goryainov, O. V. Leshonkov, “Issledovanie kontaktnogo termicheskogo soprotivleniya v konechnom tsilindre s vnutrennim istochnikom metodom bystrykh razlozhenii i problema soglasovaniya granichnykh uslovii”, Inzhenerno-fizicheskii zhurnal, 90:5 (2017), 1288–1297

[27] A. D. Chernyshov, V. V. Goryainov, A. A. Danshin, “Analysis of the stress field in a wedge using the fast expansions with pointwise determined coefficients”, IOP Conf. Series: Journal of Physics: Conf. Series, 973 (2018), 012002 | DOI

[28] A. D. Chernyshov, V. V. Goryainov, “Reshenie odnogo nelineinogo integro-differentsialnogo uravneniya metodom bystrykh razlozhenii”, Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I.Ya. Yakovleva. Seriya: mekhanika predelnogo sostoyaniya, 2012, no. 4 (12), 105–112

[29] A. D. Chernyshov, V. V. Goryainov, O. A. Chernyshov, “Primenenie metoda bystrykh razlozhenii dlya rascheta traektorii kosmicheskikh korablei”, Izvestiya vuzov. Aviatsionnaya tekhnika, 2015, no. 2, 41–47

[30] A. D. Chernyshov, “Reshenie nelineinogo uravneniya teploprovodnosti dlya krivolineinoi oblasti s usloviyami Dirikhle metodom bystrykh razlozhenii”, Inzhenerno-fizicheskii zhurnal, 91:2 (2018), 456–468

[31] A. D. Chernyshov, “Metod rasshireniya granits dlya zadach teploprovodnosti v telakh podvizhnoi formy”, Inzhenerno-fizicheskii zhurnal, 83:5 (2010), 989–994