On local weak $\tau$-density of topological spaces
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 70 (2021), pp. 16-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Questions of local weak $\tau$-density of topological spaces are studied. Sufficient conditions are found for the preservation of the property of local weak $\tau$-density of subsets of topological spaces. It is shown that a subset of a locally dense space is also locally weakly $\tau$-dense if it satisfies at least one of the following conditions: a) the subset is open in space; b) the subset is everywhere dense in space; c) the subset is canonically closed in space.
Keywords: local $\tau$-density, local weak т-density, locally compact space, Hattori spaces.
@article{VTGU_2021_70_a1,
     author = {F. G. Mukhamadiev},
     title = {On local weak $\tau$-density of topological spaces},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {16--23},
     year = {2021},
     number = {70},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_70_a1/}
}
TY  - JOUR
AU  - F. G. Mukhamadiev
TI  - On local weak $\tau$-density of topological spaces
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 16
EP  - 23
IS  - 70
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_70_a1/
LA  - ru
ID  - VTGU_2021_70_a1
ER  - 
%0 Journal Article
%A F. G. Mukhamadiev
%T On local weak $\tau$-density of topological spaces
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 16-23
%N 70
%U http://geodesic.mathdoc.fr/item/VTGU_2021_70_a1/
%G ru
%F VTGU_2021_70_a1
F. G. Mukhamadiev. On local weak $\tau$-density of topological spaces. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 70 (2021), pp. 16-23. http://geodesic.mathdoc.fr/item/VTGU_2021_70_a1/

[1] Aleksandrov P. S., Fedorchuk V. V., Zaitsev V. I., “Osnovnye momenty v razvitii teoretikomnozhestvennoi topologii”, UMN, 33:3(201) (1978), 3–48 | Zbl

[2] Beshimov R. B., “O slaboi plotnosti topologicheskikh prostranstv”, DAN RUz, 2000, no. 11, 10–13

[3] Engelking R., Obschaya topologiya, Mir, M., 1986, 752 pp.

[4] Beshimov R. B., Mukhamadiev F. G., Mamadaliev N. K., “The local density and the local weak density of hyperspaces”, International Journal of Geometry – Romania, 4:1 (2015), 42–49 | Zbl

[5] Arkhangelskii A. V., Topologicheskie prostranstva funktsii, MGU, M., 1989, 151 pp.

[6] Hattory Y., “Order and topological structures of posets of the formal balls on metric spaces”, Mem. Fac. Sci. Eng. Shimane Univ. Ser. B Math. Sci., 43 (2010), 13–26

[7] Beshimov R. B., Mukhamadiev F. G., “Cardinal properties of Hattori spaces and their hyperspaces”, Questions and Answers in General Topology, 33 (2015), 33–38

[8] Bouziad A., Sukhacheva E., “On Hattori spaces”, Commentationes Mathematicae Universitatis Carolinae, 2017, no. 2, 213–223 | DOI | Zbl

[9] Yuldashev T. K., Mukhamadiev F. G., “The local density and the local weak density in the space of permutation degree and in Hattori space”, Ural Mathematical Journal, 6:2 (2020), 108–116 | DOI | Zbl