Nonlinear effects of oscillations of two immiscible liquids in a limited vessel
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 69 (2021), pp. 97-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, the nonlinear oscillations of a two-layer fluid that completely fills a limited tank are theoretically studied. To determine any smooth function on the deflected interface, the Taylor series expansions are considered using the values of the function and its normal derivatives on the undisturbed interface of the fluids. Using two fundamental asymmetric harmonics, which are generated in two mutually perpendicular planes, the differential equations of nonlinear oscillations of the two-layer fluid interface are investigated. As a result, the frequency-response characteristics are presented and the instability regions of the forced oscillations of the two-layer fluid in the cylindrical tank are plotted, as well as the parametric resonance regions for different densities of the upper and lower fluids. The Bubnov–Galerkin method is used to plot instability regions for the approximate solution to nonlinear differential equations. At the final stage of the work, the nonlinear effects resulting from the interaction of fluids with a rigid tank that executes harmonic oscillations at the interface of the fluids are theoretically studied.
Keywords: cylindrical tank, two-layer fluid, nonlinear oscillations, instability region
Mots-clés : hydrodynamic coefficients.
@article{VTGU_2021_69_a7,
     author = {Ko Ko Win and A. N. Temnov},
     title = {Nonlinear effects of oscillations of two immiscible liquids in a limited vessel},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {97--113},
     year = {2021},
     number = {69},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_69_a7/}
}
TY  - JOUR
AU  - Ko Ko Win
AU  - A. N. Temnov
TI  - Nonlinear effects of oscillations of two immiscible liquids in a limited vessel
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 97
EP  - 113
IS  - 69
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_69_a7/
LA  - ru
ID  - VTGU_2021_69_a7
ER  - 
%0 Journal Article
%A Ko Ko Win
%A A. N. Temnov
%T Nonlinear effects of oscillations of two immiscible liquids in a limited vessel
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 97-113
%N 69
%U http://geodesic.mathdoc.fr/item/VTGU_2021_69_a7/
%G ru
%F VTGU_2021_69_a7
Ko Ko Win; A. N. Temnov. Nonlinear effects of oscillations of two immiscible liquids in a limited vessel. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 69 (2021), pp. 97-113. http://geodesic.mathdoc.fr/item/VTGU_2021_69_a7/

[1] Sretenskii L. N., Teoriya volnovykh dvizhenii zhidkosti, Nauka, M., 1977, 815 pp.

[2] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. VI, Gidrodinamika, Nauka, M., 1986, 735 pp. | MR

[3] Thorpe S. A., “On standing internal gravity waves of finite amplitude”, J. Fluid Mech., 32:3 (1968), 489–528 | DOI | Zbl

[4] Camassa R., Hurley M. W., McLaughlin R. M., Passaggia P.-Y., Thomson C. F. C., “Experimental investigation of nonlinear internal waves in deep water with miscible fluids”, Journal of Ocean Engineering and Marine Energy, 4 (2018), 243–257 | DOI

[5] La Rocca M., Sciortino G., Adduce C., Boniforti M. A., “Experimental and theoretical investigation on the sloshing of a two-liquid system with free surface”, Physics of Fluids, 2005, no. 17, 062101 | DOI | Zbl

[6] Kalinichenko V. A., Sekerzh-Zenkovich S. Ya., “Eksperimentalnoe issledovanie vtorichnykh statsionarnykh techenii v poverkhnostnykh volnakh Faradeya”, Izv. RAN. Mekhanika zhidkosti i gaza, 2008, no. 1, 141–148

[7] Kalinichenko V. A., Sekerzh-Zenkovich S. Ya., “Eksperimentalnoe issledovanie voln Faradeya maksimalnoi vysoty”, Izv. RAN. Mekhanika zhidkosti i gaza, 2007, no. 6, 103–110

[8] Porubov A. V., “O lokalizatsii dvumernykh nelineinykh vnutrennikh voln v dvukhsloinoi zhidkosti”, Zhurnal tekhnicheskoi fiziki, 75:7 (2005), 48–51 | MR

[9] Basinskii K. Yu., “Nelineinye volny na poverkhnosti sloya vyazkoi zhidkosti”, Izv. Sa-rat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 15:3 (2015), 322–329 | Zbl

[10] Grigorev A. I., Fedorov M. S., Shiryaeva S. O., “Volnovoe dvizhenie v pole sily tyazhesti na svobodnoi poverkhnosti i na granitse stratifikatsii sloisto-neodnorodnoi zhidkosti. Nelineinyi analiz”, Izv. RAN. Mekhanika zhidkosti i gaza, 2010, no. 5, 130–140

[11] Kalinichenko V. A., “Regularization of barotropic gravity waves in a two-layer fluid”, Fluid Dynamics, 54:6 (2019), 761–773 | DOI | Zbl

[12] Kalinichenko V. A., “Effect of an upper layer of viscous liquid on breaking surface gravity waves”, Journal of Physics: Conference Series, 1301 (2019), 012017 | DOI

[13] Merzlyakov A. V., Kryukova E. A., “Svobodnye kolebaniya idealnoi zhidkosti v pryamougolnom sosude s gorizontalnoi pronitsaemoi peregorodkoi”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2019, no. 60, 107–118 | DOI

[14] Pozhalostin A. A., Goncharov D. A., “Svobodnye osesimmetrichnye kolebaniya dvukhsloinoi zhidkosti s uprugim razdelitelem mezhdu sloyami pri nalichii sil poverkhnostnogo natyazheniya”, Inzhenernyi zhurnal: nauka i innovatsiya. MGTU im. N. E. Baumana. Elektron. zhurn., 2013, no. 12(24)

[15] Goncharov D. A., “Dinamika dvukhsloinoi zhidkosti, razdelennoi uprugoi peregorodkoi s uchetom sil poverkhnostnogo natyazheniya”, Nauka i obrazovanie, MGTU im. N.E. Baumana. Elektron. zhurn., 2013, no. 11

[16] Naumenko V. V., Strelnikova E. A., “Potentsial dvoinogo sloya v zadache o svobodnykh kolebaniyakh pologoi obolochki v idealnoi neszhimaemoi zhidkosti”, Issled. po teor. plastin i obolochek, 1990, no. 22, 122–133

[17] Vin Ko Ko, Temnov A. N., “Kolebaniya diskretno-stratifitsirovannykh zhidkostei v tsilindricheskom sosude i ikh mekhanicheskie analogi”, Vestnik MGTU im. Baumana. Ser. «Estestvennye nauki», 2015, no. 3, 57–69 | Zbl

[18] Vin Ko Ko, Temnov A. N., “Eksperimentalnoe i teoreticheskoe issledovanie kolebanii tverdogo tela so sloistoi zhidkostyu”, Inzhenernyi zhurnal: nauka i innovatsii, MGTU im. N.E. Baumana. Elektron. zhurn., 2018, no. 04, 1–13

[19] Vin Ko Ko, Temnov A. N., “Teoreticheskoe i eksperimentalnoe issledovaniya kolebanii tverdogo polutsilindra, imeyuschego polost, zapolnennuyu sloistoi zhidkostyu”, Inzhenernyi zhurnal: nauka i innovatsii, MGTU im. N. E. Baumana. Elektron. zhurn., 2019, no. 05

[20] Vin Ko Ko, Temnoe A. N., “Kolebaniya vyazkoi trekhsloinoi zhidkosti v nepodvizhnom bake”, Inzhenernyi zhurnal: nauka i innovatsii, MGTU im. N.E. Baumana. Elektron. zhurn., 2019, no. 07

[21] Win Ko Ko, Temnov A. N., “Experimental and theoretical studies of oscillations of stratified fluid”, IOP Conference Series: Materials Science and Engineering, 468 (2018), 012031 | DOI

[22] Lukoeskii I. A., Vvedenie v nelineinuyu dinamiku tverdogo tela s polostyami, soderzhaschimi zhidkost, In-t matematiki AN USSR, ed. V.A. Trotsenko, Nauk. Dumka, Kiev, 1990, 296 pp.

[23] Narimanov G. S., Dokuchaev L. V., Lukoeskii I. A., Nelineinaya dinamika letatelnogo apparata s zhidkostyu, Mashinostroenie, M., 1977, 208 pp.

[24] Mikishev G. N., Eksperimentalnye metody v dinamike kosmicheskikh apparatov, Mashinostroenie, M., 1987, 248 pp.

[25] Mikishev G. N., Rabinovich B. I., Dinamika tverdogo tela s polostyami, chastichno zapolnennymi zhidkostyu, Mashinostroenie, M., 1968, 532 pp.