On parasasakian structures on five-dimensional Lie algebras
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 69 (2021), pp. 37-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Para-Sasakian structures on five-dimensional contact Lie algebras $\mathfrak{g}$ with nonzero center are considered. Such Lie algebras are central extensions of the four-dimensional para-Kähler Lie algebras $(\mathfrak{h},\omega)$. In this paper, a classification of five-dimensional para-Sasakian Lie algebras with a nontrivial center is proposed, based on the classification of para-Kähler structures $J$ on symplectic Lie algebras $(\mathfrak{h},\omega)$.
Mots-clés : para-complex structure, para-contact structure
Keywords: left-invariant para-Kahler structure, left-invariant para-Sasakian structures.
@article{VTGU_2021_69_a3,
     author = {N. K. Smolentsev and I. Y. Shagabudinova},
     title = {On parasasakian structures on five-dimensional {Lie} algebras},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {37--52},
     year = {2021},
     number = {69},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_69_a3/}
}
TY  - JOUR
AU  - N. K. Smolentsev
AU  - I. Y. Shagabudinova
TI  - On parasasakian structures on five-dimensional Lie algebras
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 37
EP  - 52
IS  - 69
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_69_a3/
LA  - ru
ID  - VTGU_2021_69_a3
ER  - 
%0 Journal Article
%A N. K. Smolentsev
%A I. Y. Shagabudinova
%T On parasasakian structures on five-dimensional Lie algebras
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 37-52
%N 69
%U http://geodesic.mathdoc.fr/item/VTGU_2021_69_a3/
%G ru
%F VTGU_2021_69_a3
N. K. Smolentsev; I. Y. Shagabudinova. On parasasakian structures on five-dimensional Lie algebras. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 69 (2021), pp. 37-52. http://geodesic.mathdoc.fr/item/VTGU_2021_69_a3/

[1] Alekseevskii D. V.,Medori K., Tomassini A., “Odnorodnye para-kelerovy mnogoobraziya Einshteina”, Uspekhi matematicheskikh nauk, 64:1(385) (2009), 3–50 | DOI | MR | Zbl

[2] Calvaruso G., Fino A., “Complex and paracomplex structures on homogeneous pseudo-Riemannian four-manifolds”, Int. J. Math., 24 (2013), 1250130, 28 pp. | DOI | MR | Zbl

[3] Cruceanu V., Fortuny P., Gadea P. M., “A survey on paracomplex geometry”, Rocky Mount. J. Math., 26 (1996), 83–115 | DOI | MR | Zbl

[4] Smolentsev N. K., “Levoinvariantnye para-sasakievy struktury na gruppakh Li”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2019, no. 62, 27–37 | DOI

[5] Ovando G., “Invariant complex structures on solvable real Lie groups”, Manuscripta Math., 103 (2000), 19–30 | DOI | MR | Zbl

[6] Ovando G., “Four-dimensional symplectic Lie algebras”, Beitrage Algebra Geom., 47:2 (2006), 419–434, arXiv: math/0407501 | MR | Zbl

[7] Ovando G., “Invariant pseudo-Kahler metrics in dimension four”, J. Lie Theory, 16 (2006), 371–391 | MR | Zbl

[8] Calvaruso G., “Symplectic, complex and Kahler structures on four-dimensional generalized symmetric spaces”, Diff. Geom. Appl., 29 (2011), 758–769 | DOI | MR | Zbl

[9] Calvaruso G., “A complete classification of four-dimensional para-Kahler Lie algebras”, Complex Manifolds, 2:1 (2015), 733–748 | DOI | MR

[10] Andrada A., Barberis M. L., Dotti I. G., Ovando G., “Product structures on four-dimensional solvable Lie algebras”, Homology, Homotopy and Applications, 2005, no. 7, 9–37 | DOI | MR | Zbl

[11] Kobayashi S., Nomizu K., Foundations of Differential Geometry, v. 1, 2, Interscience Publ., New York–London, 1963 | MR | Zbl

[12] Blair D. E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | DOI | MR | Zbl

[13] Diatta A., “Left invariant contact structures on Lie groups”, Diff. Geom. and its Appl., 26:5 (2008), 544–552 ; (24 Sep 2004), arXiv: math.DG/0403555 | DOI | MR | Zbl

[14] Calvaruso G., Perrone A., “Five-dimensional paracontact Lie algebras”, Diff. Geom. and Appl., 45 (2016), 115–129 | DOI | MR | Zbl