On the asymptotic structure of non-critical Markov stochastic branching processes with continuous time
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 69 (2021), pp. 22-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work is devoted to the study of the transition probabilities of Markov branching random processes of continuous time with minimal moment conditions. Consider the non-critical case, i.e. the case when the average density of the conversion rate of particles is not zero. Let us find an asymptotic representation for the transition probabilities without additional moment conditions. To find the finite limiting invariant distribution, we restrict ourselves to the condition of finiteness of the moment of the type $\mathbb{E}[x \ln x]$ for the transformation density of particles. The statement on the asymptotic representation of the probabilistic generating function (Main Lemma) of the process under study and its differential analogue will underlie our conclusions. The theory of regularly varying functions in the sense of Karamat is essentially applied.
Keywords: Branching process, regularly varying functions, Main Lemma, transition functions
Mots-clés : invariant distributions.
@article{VTGU_2021_69_a2,
     author = {A. A. Imomov and A. Kh. Meyliev},
     title = {On the asymptotic structure of non-critical {Markov} stochastic branching processes with continuous time},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {22--36},
     year = {2021},
     number = {69},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_69_a2/}
}
TY  - JOUR
AU  - A. A. Imomov
AU  - A. Kh. Meyliev
TI  - On the asymptotic structure of non-critical Markov stochastic branching processes with continuous time
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 22
EP  - 36
IS  - 69
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_69_a2/
LA  - ru
ID  - VTGU_2021_69_a2
ER  - 
%0 Journal Article
%A A. A. Imomov
%A A. Kh. Meyliev
%T On the asymptotic structure of non-critical Markov stochastic branching processes with continuous time
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 22-36
%N 69
%U http://geodesic.mathdoc.fr/item/VTGU_2021_69_a2/
%G ru
%F VTGU_2021_69_a2
A. A. Imomov; A. Kh. Meyliev. On the asymptotic structure of non-critical Markov stochastic branching processes with continuous time. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 69 (2021), pp. 22-36. http://geodesic.mathdoc.fr/item/VTGU_2021_69_a2/

[1] Harris T. E., The theory of branching processes, Springer-Verlag, Berlin, 1963 | MR | Zbl

[2] Bellman R., Harris T. E., “On the theory of age-dependent stochastic branching processes”, Proc. Nat. Acad. Sci. USA, 34 (1948), 601–604 | DOI | MR | Zbl

[3] Sevastyanov B. A., “Vetvyaschiesya protsessy s prevrascheniyami, zavisyaschimi ot vozrasta chastits”, Teoriya veroyatn. i ee primenen., 9:4 (1964), 577–594

[4] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971

[5] Smith W. L., Wilkinson W., “On branching processes in random environment”, Ann. Math. Statist., 40:3 (1969), 814–827 | DOI | MR | Zbl

[6] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy v sluchainoi srede i butylochnye gorlyshki v evolyutsii populyatsii”, Teoriya veroyatn. i ee primenen., 51:1 (2006), 22–46 | MR

[7] Vatutin V. A., Dyakonova E. E., “Veroyatnost nevyrozhdeniya dlya odnogo klassa mnogotipnykh dokriticheskikh vetvyaschikhsya protsessov v sluchainoi srede”, Matem. zametki, 107:2 (2020), 163–177 | MR | Zbl

[8] Dyakonova E. E., Li D., Vatutin V. A., Zhang M., “Branching processes in random environment with immigration stopped at zero”, J. Appl. Probab., 57:1 (2020), 237–249 | DOI | MR | Zbl

[9] Vatutin V. A., Dyakonova E. E., “Dokriticheskie vetvyaschiesya protsessy v sluchainoi srede s immigratsiei: vyzhivanie odnogo semeistva”, Teoriya veroyatn. i ee primenen., 65:4 (2020), 671–692 | MR

[10] Dong C., Smadi C., Vatutin V. A., “Critical branching processes in random environment and Cauchy domain of attraction”, ALEA, Lat. Am. J. Probab. Math. Stat., 17 (2020), 877–900 | DOI | MR | Zbl

[11] Vatutin V. A., Dyakonova E. E., Topchii V. A., “Kriticheskie protsessy Galtona - Vatsona so schetnym mnozhestvom tipov chastits i beskonechnymi vtorymi momentami”, Matem. sb., 212:1 (2021), 3–27 | MR | Zbl

[12] Kolmogorov A. N., “K resheniyu odnoi biologicheskoi zadachi”, Izv. NII matem. i mekh. Tomskogo un-ta, 1938, no. 2, 7–12

[13] Athreya K. B., Ney P. E., Branching processes, Springer, New York, 1972 | MR | Zbl

[14] Seneta E., Pravilno menyayuschiesya funktsii, per. s angl., Nauka, M., 1985

[15] Zolotarev V. M., “More exact statements of several theorems in the theory of branching processes”, Theory Prob. and Appl., 2 (1957), 245–253 | DOI | MR

[16] Asmussen S., Hering H., Branching Processes, Boston, 1983 | MR | Zbl

[17] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge, 1987 | MR | Zbl

[18] Imomov A. A., “On a limit structure of the Galton-Watson branching processes with regularly varying generating functions”, Probab. and Math. Stat., 39:1 (2019), 61–73 | DOI | MR | Zbl

[19] Chistyakov V. P., “Lokalnye predelnye teoremy teorii vetvyaschikhsya sluchainykh protsessov”, Teoriya veroyatn. i ee primenen., 2:3 (1957), 360–374 | Zbl

[20] Imomov A. A., “Limit Properties of Transition Functions of Continuous-Time Markov Branching Processes”, Int. J. Stoch. Anal., 2014, 10 pp. | DOI | MR

[21] Imomov A. A., “A differential analog of the main lemma of the theory of Markov branching processes and its applications”, Ukrainian Math. Journal, 57:2 (2005), 307–315 | DOI | MR | Zbl

[22] Imomov A. A., “On conditioned limit structure of the Markov branching process without finite second moment”, Malaysian J. Math. Sciences, 11:1 (2017), 393–422 | MR | Zbl

[23] Slack R. S., “A branching process with mean one and possible infinite variance”, Z. Wahrscheinlichkeitstheorie verw. Geb., 9 (1968), 139–145 | DOI | MR | Zbl