Mots-clés : invariant distributions.
@article{VTGU_2021_69_a2,
author = {A. A. Imomov and A. Kh. Meyliev},
title = {On the asymptotic structure of non-critical {Markov} stochastic branching processes with continuous time},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {22--36},
year = {2021},
number = {69},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2021_69_a2/}
}
TY - JOUR AU - A. A. Imomov AU - A. Kh. Meyliev TI - On the asymptotic structure of non-critical Markov stochastic branching processes with continuous time JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2021 SP - 22 EP - 36 IS - 69 UR - http://geodesic.mathdoc.fr/item/VTGU_2021_69_a2/ LA - ru ID - VTGU_2021_69_a2 ER -
%0 Journal Article %A A. A. Imomov %A A. Kh. Meyliev %T On the asymptotic structure of non-critical Markov stochastic branching processes with continuous time %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2021 %P 22-36 %N 69 %U http://geodesic.mathdoc.fr/item/VTGU_2021_69_a2/ %G ru %F VTGU_2021_69_a2
A. A. Imomov; A. Kh. Meyliev. On the asymptotic structure of non-critical Markov stochastic branching processes with continuous time. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 69 (2021), pp. 22-36. http://geodesic.mathdoc.fr/item/VTGU_2021_69_a2/
[1] Harris T. E., The theory of branching processes, Springer-Verlag, Berlin, 1963 | MR | Zbl
[2] Bellman R., Harris T. E., “On the theory of age-dependent stochastic branching processes”, Proc. Nat. Acad. Sci. USA, 34 (1948), 601–604 | DOI | MR | Zbl
[3] Sevastyanov B. A., “Vetvyaschiesya protsessy s prevrascheniyami, zavisyaschimi ot vozrasta chastits”, Teoriya veroyatn. i ee primenen., 9:4 (1964), 577–594
[4] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971
[5] Smith W. L., Wilkinson W., “On branching processes in random environment”, Ann. Math. Statist., 40:3 (1969), 814–827 | DOI | MR | Zbl
[6] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy v sluchainoi srede i butylochnye gorlyshki v evolyutsii populyatsii”, Teoriya veroyatn. i ee primenen., 51:1 (2006), 22–46 | MR
[7] Vatutin V. A., Dyakonova E. E., “Veroyatnost nevyrozhdeniya dlya odnogo klassa mnogotipnykh dokriticheskikh vetvyaschikhsya protsessov v sluchainoi srede”, Matem. zametki, 107:2 (2020), 163–177 | MR | Zbl
[8] Dyakonova E. E., Li D., Vatutin V. A., Zhang M., “Branching processes in random environment with immigration stopped at zero”, J. Appl. Probab., 57:1 (2020), 237–249 | DOI | MR | Zbl
[9] Vatutin V. A., Dyakonova E. E., “Dokriticheskie vetvyaschiesya protsessy v sluchainoi srede s immigratsiei: vyzhivanie odnogo semeistva”, Teoriya veroyatn. i ee primenen., 65:4 (2020), 671–692 | MR
[10] Dong C., Smadi C., Vatutin V. A., “Critical branching processes in random environment and Cauchy domain of attraction”, ALEA, Lat. Am. J. Probab. Math. Stat., 17 (2020), 877–900 | DOI | MR | Zbl
[11] Vatutin V. A., Dyakonova E. E., Topchii V. A., “Kriticheskie protsessy Galtona - Vatsona so schetnym mnozhestvom tipov chastits i beskonechnymi vtorymi momentami”, Matem. sb., 212:1 (2021), 3–27 | MR | Zbl
[12] Kolmogorov A. N., “K resheniyu odnoi biologicheskoi zadachi”, Izv. NII matem. i mekh. Tomskogo un-ta, 1938, no. 2, 7–12
[13] Athreya K. B., Ney P. E., Branching processes, Springer, New York, 1972 | MR | Zbl
[14] Seneta E., Pravilno menyayuschiesya funktsii, per. s angl., Nauka, M., 1985
[15] Zolotarev V. M., “More exact statements of several theorems in the theory of branching processes”, Theory Prob. and Appl., 2 (1957), 245–253 | DOI | MR
[16] Asmussen S., Hering H., Branching Processes, Boston, 1983 | MR | Zbl
[17] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge, 1987 | MR | Zbl
[18] Imomov A. A., “On a limit structure of the Galton-Watson branching processes with regularly varying generating functions”, Probab. and Math. Stat., 39:1 (2019), 61–73 | DOI | MR | Zbl
[19] Chistyakov V. P., “Lokalnye predelnye teoremy teorii vetvyaschikhsya sluchainykh protsessov”, Teoriya veroyatn. i ee primenen., 2:3 (1957), 360–374 | Zbl
[20] Imomov A. A., “Limit Properties of Transition Functions of Continuous-Time Markov Branching Processes”, Int. J. Stoch. Anal., 2014, 10 pp. | DOI | MR
[21] Imomov A. A., “A differential analog of the main lemma of the theory of Markov branching processes and its applications”, Ukrainian Math. Journal, 57:2 (2005), 307–315 | DOI | MR | Zbl
[22] Imomov A. A., “On conditioned limit structure of the Markov branching process without finite second moment”, Malaysian J. Math. Sciences, 11:1 (2017), 393–422 | MR | Zbl
[23] Slack R. S., “A branching process with mean one and possible infinite variance”, Z. Wahrscheinlichkeitstheorie verw. Geb., 9 (1968), 139–145 | DOI | MR | Zbl