Numerical calculation of strength and shear resistance of non-rigid road pavement by the finite element method
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 69 (2021), pp. 155-165 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents 2D mathematical simulation results for a T-90 tank interacting with the III-type road in a plane-strain formulation. The purpose of the work is to determine the vertical deflection of an asphalt-concrete road, as well as the load factor of the two-layer road pavement (dense-graded asphalt concrete, open-graded asphalt concrete) and two-layer roadbed (gravel roadbed, ground roadbed - silt sandy loam). To calculate the load factor of the road pavement, the ratio of the von Mises stress to the ultimate compression stress is used. To analyze the shear resistance of the roadbed, the modified Drucker–Prager strength criterion is utilized. The computed results reveal the maximum vertical deflection in the contact area of the tracks. In the same area, the load factor of the road pavement is 3–12, which indicates the high bearing capacity of the dense-graded asphalt concrete. Analysis of the shear resistance of the roadbed shows that irreversible deformations occur in the gravel base in the contact area of the tracks, which can lead to the subsidence of the coating, while the load factor for sandy loam is 3–10.
Keywords: road pavement, stress-strain state, factor of safety, Drucker–Prager criterion, finite element method.
@article{VTGU_2021_69_a11,
     author = {D. V. Yanov and S. A. Zelepugin},
     title = {Numerical calculation of strength and shear resistance of non-rigid road pavement by the finite element method},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {155--165},
     year = {2021},
     number = {69},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_69_a11/}
}
TY  - JOUR
AU  - D. V. Yanov
AU  - S. A. Zelepugin
TI  - Numerical calculation of strength and shear resistance of non-rigid road pavement by the finite element method
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 155
EP  - 165
IS  - 69
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_69_a11/
LA  - ru
ID  - VTGU_2021_69_a11
ER  - 
%0 Journal Article
%A D. V. Yanov
%A S. A. Zelepugin
%T Numerical calculation of strength and shear resistance of non-rigid road pavement by the finite element method
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 155-165
%N 69
%U http://geodesic.mathdoc.fr/item/VTGU_2021_69_a11/
%G ru
%F VTGU_2021_69_a11
D. V. Yanov; S. A. Zelepugin. Numerical calculation of strength and shear resistance of non-rigid road pavement by the finite element method. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 69 (2021), pp. 155-165. http://geodesic.mathdoc.fr/item/VTGU_2021_69_a11/

[1] Babkov V. F., Andreev O. V., Proektirovanie avtomobilnykh dorog, v. 2, Transport, M., 1987, 415 pp.

[2] Aleksandrov A. S., Dolgikh G. V., Kalinin A. L., “Sovershenstvovanie rascheta dorozhnykh konstruktsii po soprotivleniyu sdvigu. Chast 2. Modifitsirovannye modeli rascheta glavnykh i kasatelnykh napryazhenii”, Inzhenerno-stroitelnyi zhurnal, 2016, no. 2(62), 51–68 | DOI

[3] Aman, Awaluddin A., Ahmad A., Olivia M., “Parametric study on the compressive strength geopolymer paving block”, IOP Conf. Series: Materials Science and Engineering, 345 (2018), 012018 | DOI

[4] Kolesnikov G. N., Gavrilov T. A., “Modelirovanie uslovii poyavleniya nizkotemperaturnykh treschin v asfaltobetonnom sloe avtomobilnoi dorogi”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2018, no. 56, 57–66 | DOI

[5] Sirotyuk V. V., Lunev A. A., “Prochnostnye i deformatsionnye kharakteristiki zoloshlakovoi smesi”, Inzhenerno-stroitelnyi zhurnal, 2017, no. 6(74), 3–16 | DOI

[6] Judycki J., “A new viscoelastic method of calculation of low-temperature thermal stresses in asphalt layers of pavements”, Int. J. Pavement Engineering, 19:1 (2018), 24–36 | DOI

[7] Teltaev B. B., Liu Dzh., Suppes E. A., “Raspredelenie temperatury, vlazhnosti, napryazhenii i deformatsii v avtomobilnoi doroge”, Inzhenerno-stroitelnyi zhurnal, 2018, no. 7(83), 102–113 | DOI

[8] Matveev S. A., Martynov E. A., Litvinov N. N., “Raschet armirovannoi konstruktsii dorozhnoi odezhdy kak mnogosloinoi plity na uprugom osnovanii”, Vestnik SibADI, 2015, no. 5(45), 72–76

[9] Al-Jumaili M. A., Issmael O. D., “Cold asphalt mixtures with high reclaimed pavement material percentages response to local traffic loading and environmental conditions”, IOP Conf. Series: Materials Science and Engineering, 433 (2018), 012013 | DOI

[10] Vyrozhemskyi V., Krayushkina K., Bidnenko N., “Durable high strength cement concrete topping for asphalt roads”, IOP Conf. Series: Materials Science and Engineering, 236 (2017), 012031 | DOI

[11] Mikhailin R. G., “Eksperimentalnye issledovaniya po snizheniyu sloev konstruktsii osnovaniya dorozhnoi odezhdy avtomobilnoi dorogi «Amur» (Chita–Khabarovsk) km 1927–km 1942 s ispolzovaniem georeshetki”, Sovremennye naukoemkie tekhnologii, 2017, no. 1, 51–55

[12] Zenkevich O. S., Metod konechnykh elementov v tekhnike, ed. B.E. Pobedrya, Mir, M., 1975, 543 pp.

[13] Calvarano L. S., Palamara R., Leonardi G., Moraci N., “3D-FEM Analysis on geogrid reinforced flexible pavement roads”, IOP Conf. Series: Earth and Environmental Science, 95 (2017), 022024 | DOI

[14] Li S., Hu C., “Finite element analysis of GFRP reinforced concrete pavement under static load”, IOP Conf. Series: Earth and Environmental Science, 113 (2018), 012188 | DOI

[15] Malik A. V., Lavit I. M., “Metod rascheta koeffitsienta intensivnosti napryazhenii dlya nepodvizhnoi treschiny normalnogo razryva pri dinamicheskom nagruzhenii”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2018, no. 54, 88–102 | DOI

[16] Leonardi G., “Finite element analysis for airfield asphalt pavements rutting prediction”, Bulletin of the Polish Academy of Sciences: Technical Sciences, 63:2 (2015), 397403 | DOI

[17] Drucker D. C., Prager W., “Soil mechanics and plastic analysis or limit design”, Quarterly of Applied Mathematics, 10:2 (1952), 157–165 | DOI | MR | Zbl

[18] Mikushina V. A., Smolin I. Yu., “Chislennoe modelirovanie deformirovaniya i razrusheniya poristoi alyumooksidnoi keramiki na mezourovne”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2019, no. 58, 99–108 | DOI | MR

[19] Otraslevye dorozhnye normy: ODN 218.046-01. Proektirovanie nezhestkikh dorozhnykh odezhd, Informavtodor, M., 2001, 146 pp.