Mots-clés : viscous fluid, vibrations
@article{VTGU_2021_69_a10,
author = {Kh. Kh. Khudoynazarov and R. I. Khalmuradov and B. F. Yalgashev},
title = {Longitudinal-radial vibrations of a elastic cylindrical shell filled with a viscous compressible liquid},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {139--154},
year = {2021},
number = {69},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2021_69_a10/}
}
TY - JOUR AU - Kh. Kh. Khudoynazarov AU - R. I. Khalmuradov AU - B. F. Yalgashev TI - Longitudinal-radial vibrations of a elastic cylindrical shell filled with a viscous compressible liquid JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2021 SP - 139 EP - 154 IS - 69 UR - http://geodesic.mathdoc.fr/item/VTGU_2021_69_a10/ LA - ru ID - VTGU_2021_69_a10 ER -
%0 Journal Article %A Kh. Kh. Khudoynazarov %A R. I. Khalmuradov %A B. F. Yalgashev %T Longitudinal-radial vibrations of a elastic cylindrical shell filled with a viscous compressible liquid %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2021 %P 139-154 %N 69 %U http://geodesic.mathdoc.fr/item/VTGU_2021_69_a10/ %G ru %F VTGU_2021_69_a10
Kh. Kh. Khudoynazarov; R. I. Khalmuradov; B. F. Yalgashev. Longitudinal-radial vibrations of a elastic cylindrical shell filled with a viscous compressible liquid. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 69 (2021), pp. 139-154. http://geodesic.mathdoc.fr/item/VTGU_2021_69_a10/
[1] Vlasov V. Z., Obschaya teoriya obolochek, GITTL, M.–L., 1949, 784 pp. | MR
[2] Novozhilov V. V., Finkelshtein R. M., “O pogreshnosti gipotez Kirkhgofa v teorii obolochek”, PMM, 7:5 (1943), 331–340
[3] Mushtari Kh. M., “Ob oblasti primenimosti priblizhennoi teoriya obolochek Kirkhgoffa–Lyava”, PMM, 11:5 (1947), 517–520 | Zbl
[4] Darevskii V. M., “Ob osnovnykh sootnosheniyakh teorii tonkikh obolochek”, PMM, 25:3 (1961), 519–535 | MR | Zbl
[5] Nigul U. K., “Asimptoticheskaya teoriya statiki i dinamiki uprugikh krugovykh tsilindricheskikh obolochek i analiz tochnosti razlichnykh variantov v teorii Kirkhgofa - Lyava”, Teoriya plastin i obolochek, Erevan, 1964, 738–742
[6] Grigolyuk E. I., Selezov I. T., “Neklassicheskie teorii kolebanii sterzhnei, plastin i obolochek”, Itogi nauki i tekhniki. Ser. Mekhanika tverd. deformir. tel, 5, VINITI, M., 1973, 272 pp. | Zbl
[7] Ambartsumyan S. A., “K voprosu postroeniya priblizhennykh teorii rascheta pologikh tsilindricheskikh obolochek”, PmM, 18:3 (1954), 303–312 | MR | Zbl
[8] Yi-Yuan Yu, “Vibrations of cylindrical shells analyzed by means of Donnell-type equations”, Aero/Space Sci, 11 (1958), 699–715 | MR
[9] Nigul U. K., “Lineinye uravneniya dinamiki uprugoi krugovoi tsilindricheskoi obolochki, svobodnye ot gipotez”, Tr. Tallinsk. politekhn. in-ta. Seriya A, 1960, no. 7, 67–76
[10] Petrashen G. I., “Problemy inzhenernoi teorii kolebanii vyrozhdennykh sistem”, Issledovaniya po uprugosti i plastichnosti, 5, Izd-vo LGU, L., 1966, 3–33
[11] Herrmann G., Mirsky I., “Three-dimensional and shell theory analysis of axially symmetric motions of cylinders”, J. Appl. Mech., 23:4 (1956), 563–568 | DOI | MR | Zbl
[12] Khudoinazarov Kh. Kh., Yalgashev B. F., “Osesimmetrichnye kolebaniya vyazkouprugogo tsilindricheskogo sloya, zapolnennogo vyazkoi szhimaemoi zhidkostyu”, Problemy arkhitektury i stroitelstva, 2016, no. 1, 119–125
[13] Filippov I. G., Kudainazarov K., “General transverse vibrations equations for a circular cylindrical viscoelastic shell”, Soviet Applied Mechanics, 26:4 (1990), 351–357 | DOI | Zbl
[14] Khudoynazarov Kh., Khudoyberdiyev Z. B., “Unsteady vibrations of a three-layer plate with an asymmetric structure”, IOP Conf. Ser.: Earth Environ. Sci, 614 (2020), 012061 | DOI
[15] Khudoinazarov Kh. Kh., Abdirashidov A., Burkutboev Sh. M., “Modelirovanie krutilnykh kolebanii vyazkouprugogo kruglogo sterzhnya, vraschayuschegosya s postoyannoi uglovoi skorostyu”, Matematicheskoe modelirovanie i chislennye metody, 2016, no. 1 (9), 38–51
[16] Khudoynazarov Kh., Yaxshiboyev Sh.R., “The mathematical model of transverse vibrations of the three-layer plate”, IOP Conf. Ser.: Earth Environ. Sci, 614 (2020), 012062 | DOI
[17] Khudoinazarov Kh. Kh., Burkutboev Sh. M., “Matematicheskaya model krutilnykh kolebanii tsilindricheskogo sloya s uchetom protekayuschei zhidkosti i vrascheniya”, Matematicheskoe modelirovanie i chislennye metody, 2017, no. 4, 38–56
[18] Netrebko A. V., Pshenichnov S. G., “Nekotorye zadachi dinamiki lineino-vyazkouprugikh tsilindricheskikh obolochek konechnoi dliny”, Problemy prochnosti i plastichnosti, 77:1 (2015)
[19] Khalmuradov R. I., Yalgashev B. F., “Frequency analysis of longitudinal-radial vibrations of a cylindrical shell”, IOP Conf. Ser.: Earth Environ. Sci, 614 (2020), 012087 | DOI
[20] Bespalova E. I., Boreiko N. P., “Opredelenie sobstvennykh chastot sostavnykh anizotropnykh obolochechnykh sistem s ispolzovaniem razlichnykh modelei deformatsii”, Int. Appl. Mech., 55 (2019), 41–54 | DOI
[21] Kubenko V. D., “Opredelenie dinamicheskikh kharakteristik vyazkoi zhidkosti v tsilindricheskoi polosti pod deistviem sfericheskogo izluchatelya”, Int. Appl. Mech., 55 (2019), 296–304 | DOI
[22] Akulenko L. D., Gavrikov A. A., Nesterov S. V., “Sobstvennye kolebaniya truboprovoda na uprugom osnovanii, transportiruyuschego zhidkost”, Izv. RAN. MTT, 2018, no. 1, 123–133
[23] Khudayarov B. A., Komilova Kh. M., “Chislennoe modelirovanie kolebanii vyazkouprugikh truboprovodov, transportiruyuschikh dvukhfaznuyu sredu v rezhime probkovogo techeniya”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2019, no. 61, 95–110 | DOI | MR
[24] Guz A. N., “Rasprostranenie voln v tsilindricheskoi obolochke s vyazkoi szhimaemoi zhidkostyu”, Prikl. mekh. Kiev, 16:10 (1980), 10–20 | Zbl
[25] Khudoinazarov Kh. Kh., Yalgashev B. F., “O nestatsionarnykh zadachakh gidrouprugosti dlya tsilindricheskogo sloya s vyazkoi szhimaemoi zhidkostyu”, Problemy arkhitektury i stroitelstva, 2007, no. 2, 119–125
[26] Khudoynazarov K., Yalgashev B. F., Mavlonov T., “Mathematical modelling of torsional vibrations of the three-layer cylindrical viscoelastic shell”, IOP Conf. Ser.: Earth Environ. Sci, 1030 (2021), 012098 | DOI
[27] Khudoinazarov Kh. Kh., Nestatsionarnoe vzaimodeistvie krugovykh tsilindricheskikh obolochek i sterzhnei s deformiruemoi sredoi, Izd-vo im. Abu Ali ibn Sino, Tashkent, 2003, 325 pp.
[28] Filippov I. G., Kudainazarov K., “Refinement of equations describing longitudinal-radial vibrations of a circular cylindrical viscoelastic shell”, Soviet Applied Mechanics, 26:2 (1990), 161–168 | DOI | Zbl
[29] Filippov I. G., Kudainazarov K., “Boundary-value problems of longitudinal vibrations of circular cylindrical shells”, International Applied Mechanics, 34:12 (1998), 1204–1210 | DOI | Zbl