@article{VTGU_2021_69_a0,
author = {A. R. Aliev and Sh. Sh. Radzhabov},
title = {Eigenfunction expansions of the magnetic {Schr\"odinger} operator in bounded domains},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {5--14},
year = {2021},
number = {69},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2021_69_a0/}
}
TY - JOUR AU - A. R. Aliev AU - Sh. Sh. Radzhabov TI - Eigenfunction expansions of the magnetic Schrödinger operator in bounded domains JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2021 SP - 5 EP - 14 IS - 69 UR - http://geodesic.mathdoc.fr/item/VTGU_2021_69_a0/ LA - ru ID - VTGU_2021_69_a0 ER -
%0 Journal Article %A A. R. Aliev %A Sh. Sh. Radzhabov %T Eigenfunction expansions of the magnetic Schrödinger operator in bounded domains %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2021 %P 5-14 %N 69 %U http://geodesic.mathdoc.fr/item/VTGU_2021_69_a0/ %G ru %F VTGU_2021_69_a0
A. R. Aliev; Sh. Sh. Radzhabov. Eigenfunction expansions of the magnetic Schrödinger operator in bounded domains. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 69 (2021), pp. 5-14. http://geodesic.mathdoc.fr/item/VTGU_2021_69_a0/
[1] Krulikovskii N. N., Puti razvitiya spektralnoi teorii obyknovennykh differentsialnykh operatorov, TGU, Tomsk, 2008, 224 pp.
[2] Rajabov Sh.Sh., “Generalized Dirichlet problems for magnetic Schrodinger operator”, Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan, 45:1 (2019), 111–118 | MR | Zbl
[3] Leinfelder H., Simader C., “Schrodinger operators with singular magnetic vector potentials”, Math. Z., 176 (1981), 1–19 | DOI | MR | Zbl
[4] Balandin M. Yu., Shurina E. P., Vektornyi metod konechnykh elementov, NGTU, Novosibirsk, 2001, 69 pp.
[5] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989, 464 pp.
[6] Raymond N., Elements of spectral theory, Master, France, 2017, 61 pp.
[7] Shubin M. A., Lektsii ob uravneniyakh matematicheskoi fiziki, MTsNMO, M., 2003, 303 pp.
[8] Rajabov Sh.Sh., “On the existence and uniqueness of the solution of Dirichlet generalized problem in arbitrary domain of n-dimensional space Rn for magnetic Schrodinger operator”, Azerbaijan Journal of Mathematics, 10:1 (2020), 172–180 | MR | Zbl
[9] Mizokhata S., Teoriya uravnenii s chastgnymi proizvodnymi, Mir, M., 1977, 504 pp.
[10] Adams R. A., Fournier J. J., Sobolev Spaces, Academic Press, Amsterdam–Boston, 2003, 317 pp. | MR | Zbl
[11] Aliev A. R., Eivazov E. Kh., “O diskretnosti spektra magnitnogo operatora Shredingera”, Funktsionalnyi analiz i ego prilozheniya, 46:4 (2012), 83–85 | MR | Zbl
[12] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982, 428 pp.
[13] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, v. 1, Izd-vo Kharkovskogo universiteta, Vischa shkola, Kharkov, 1977, 318 pp. | MR