Recovery of absolute permeability of hydrocarbon deposits with secondary filtration-capacitive properties using wavelet transforms
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 68 (2020), pp. 106-117
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Due to depletion of hydrocarbon reserves in “traditional” porous reservoirs, it becomes necessary to study and evaluate the prospects for the development of reservoirs with secondary porosity-permeability properties (SPP). Permeability in reservoirs with SPP is described in a hydrodynamic simulator using a dualenvironment model represented as a set of porous blocks (matrix) separated by a system. One of the most important hydrodynamic model (HDM) parameters is the absolute reservoir permeability coefficient. However, recovery of the latter for reservoirs with SPP by standard methods is impossible. The purpose of this research is to restore a cube of the absolute permeability of a hydrocarbon reservoir with SPP using the wavelet transform method which accounts for the structure, to reproduce well dynamics in the HDM, and to analyze the applicability of the obtained maps when predicting distribution of productive zones. Wavelet-decomposition maps give a detailed description of the structural surface amplitude corresponding to the geological representation: the most productive zones are those with structural failures such as bending or dome. The downhole historical matching for bottom-hole pressure measurements and the dynamics of the work implemented using the wavelet transform method are performed in accordance with regulation requirements, which allow one to use a hydrodynamic model in the calculation of predictive options.
Keywords: secondary porosity-permeability properties, absolute permeability, wavelet transform, hydrodynamic modeling.
@article{VTGU_2020_68_a9,
     author = {A. A. Orlov and A. S. Russkikh},
     title = {Recovery of absolute permeability of hydrocarbon deposits with secondary filtration-capacitive properties using wavelet transforms},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {106--117},
     year = {2020},
     number = {68},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_68_a9/}
}
TY  - JOUR
AU  - A. A. Orlov
AU  - A. S. Russkikh
TI  - Recovery of absolute permeability of hydrocarbon deposits with secondary filtration-capacitive properties using wavelet transforms
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 106
EP  - 117
IS  - 68
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_68_a9/
LA  - ru
ID  - VTGU_2020_68_a9
ER  - 
%0 Journal Article
%A A. A. Orlov
%A A. S. Russkikh
%T Recovery of absolute permeability of hydrocarbon deposits with secondary filtration-capacitive properties using wavelet transforms
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 106-117
%N 68
%U http://geodesic.mathdoc.fr/item/VTGU_2020_68_a9/
%G ru
%F VTGU_2020_68_a9
A. A. Orlov; A. S. Russkikh. Recovery of absolute permeability of hydrocarbon deposits with secondary filtration-capacitive properties using wavelet transforms. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 68 (2020), pp. 106-117. http://geodesic.mathdoc.fr/item/VTGU_2020_68_a9/

[1] V. S. Sokolov, Modeling of the oil and gas reservoir engineering, a textbook for students of institutions of higher education studying in the direction of master's in Oil and Gas Engineering, TSOGU, Tyumen, 2014

[2] J. Douglas Jr., D. W. Peaceman, H. H. Rachford Jr., “A method for calculating multidimensional immiscible displacement”, Trans. SPE AIME, 216 (1959), 297–306 | DOI

[3] Zgangxin Chen, Gyamrem Huan, Ma Yuanle, Computational methods for multiphase flows in porous media, Southern Methodist University, Dallas, Texas, 2006 | MR

[4] M. A. Antipin, Yu. A. Plitkina, A. P. Devyatkov, A. V. Vershinin, “Development of the apparatus of structural analysis in the framework of a methodology for localizing residual oil reserves using the example of the Pokrovsky field in the Samara region”, Optimizatsiya tekhnologiy razrabotki neftyanykh mestorozhdeniy, 2008, no. 2, 5–11

[5] L. S. Brilliant, A. A. Klochkov, M. A. Antipin, “A methodology for studying the structure of residual oil reserves using the example of the BV$_8^2$ object of the Varyogansk field”, Neftyanoe hozyaystvo – Oil industry, 2005, no. 1, 98–100

[6] S. S. Byushgens, Differential geometry, LKI Publishing House, M., 2008

[7] S. P. Novikov, A. T. Fomenko, Elements of differential geometry and topology, Nauka, M., 1987 | MR

[8] B. M. Shumilov, “An algorithm with splitting of the wavelet transform of Hermitian cubic splines”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2010, no. 4 (12), 45–55

[9] V. P. Vorob'ev, V. G. Gribunin, Theory and practice of wavelet transforms, VUS Publishing House, Saint Petersburg, 1999

[10] A. P. Petukhov, Introduction to the theory of burst bases, Saint Petersburg State University, Saint Petersburg, 1999

[11] Temporary regulations for assessing the quality and acceptance of three-dimensional digital geological and hydrodynamic models submitted by subsoil users as a part of technical projects for the development of hydrocarbon deposits for consideration by RCRC Rosnedr for HCS, protocol of CCR Rosnedr for HCS dated April 19, 2012 No 5370