@article{VTGU_2020_68_a3,
author = {A. A. Alifov and M. G. Farzaliev},
title = {On the calculation by the method of linearization of the interaction of parametric and self-oscillations at delay and limited excitation},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {41--52},
year = {2020},
number = {68},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_68_a3/}
}
TY - JOUR AU - A. A. Alifov AU - M. G. Farzaliev TI - On the calculation by the method of linearization of the interaction of parametric and self-oscillations at delay and limited excitation JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2020 SP - 41 EP - 52 IS - 68 UR - http://geodesic.mathdoc.fr/item/VTGU_2020_68_a3/ LA - ru ID - VTGU_2020_68_a3 ER -
%0 Journal Article %A A. A. Alifov %A M. G. Farzaliev %T On the calculation by the method of linearization of the interaction of parametric and self-oscillations at delay and limited excitation %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2020 %P 41-52 %N 68 %U http://geodesic.mathdoc.fr/item/VTGU_2020_68_a3/ %G ru %F VTGU_2020_68_a3
A. A. Alifov; M. G. Farzaliev. On the calculation by the method of linearization of the interaction of parametric and self-oscillations at delay and limited excitation. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 68 (2020), pp. 41-52. http://geodesic.mathdoc.fr/item/VTGU_2020_68_a3/
[1] A. N. Volkov, O. N. Matsko, A. V. Mosalova, “Selecting of the energysaving laws of motion for mechatronic drives of production machines”, Nauchnotekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki – St. Petersburg Polytechnic University Journal of Engineering Science and Technology, 24:4 (2018), 141–149 | DOI
[2] V. O. Kononenko, Vibrating systems with limited power-supply, Nauka, M., 1964
[3] V. O. Kononenko, Vibrating Systems with Limited Power-Supply, Iliffe, London, 1969
[4] A. A. Alifov, K. V. Frolov, Interaction of Nonlinear Oscillatory Systems with Energy Sources, Hemisphere Publishing Corporation, New York–Washington–Philadelphia–London, 1990, 327 pp.
[5] T. S. Krasnopolskaya, R. F. Ganiev, “Scientific heritage of V.O. Kononenko: the Sommerfeld–Kononenko effect”, Problemy mashinostroeniya i nadezhnosti mashin – Journal of Machinery Manufacture and Reliability, 2018, no. 5, 3–15 | DOI
[6] D. A. Kovriguine, “Synchronization and Sommerfeld effect as typical resonant patterns”, Archive Appl. Mech., 82 (2012), 591–604 | DOI | Zbl
[7] A. K. Samantaray, S. S. Dasgupta, R. Bhattacharyya, “Sommerfeld effect in rotationally symmetric planar dynamical systems”, International Journal of Engineering Science, 48 (2010), 21–36 | DOI
[8] L. Cveticanin, M. Zukovic, D. Cveticanin, “Non-ideal source and energy harvesting”, Acta Mech., 228 (2017), 3369–3379 | DOI | MR | Zbl
[9] Automatic control theory, v. 1, Vysshaya shkola, M., 1986
[10] V. P. Rubanik, Oscillations of quasilinear systems with delay, Nauka, M., 1969
[11] N. V. Butenin, Yu. I. Neymark, N. A. Fufaev, Introduction to the theory of nonlinear oscillations, Nauka, M., 1976
[12] V. K. Astashev, M. E. Gerts, “Self-oscillations of a visco-elastic rod with limiters under the action of a lagging force”, Mashinovedenie Soviet – Machine Science, 1973, no. 5, 3–11
[13] B. M. Zhirnov, “On self-oscillations of a mechanical system with two degrees of freedom in the presence of a delay”, Prikladnaya mekhanika – International Applied Mechanics, 9:10 (1973), 83–87
[14] N. N. Bogolyubov, Yu. A. Mitropolskiy, Asymptotic methods in the theory of nonlinear oscillations, Nauka, M., 1974, 504 pp. | MR
[15] Vibrations in technical equipment, v. 5, Mashinostroenie, M., 1979
[16] A. A. Alifov, Methods of direct linearization for calculation of nonlinear systems, Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2015
[17] A. A. Alifov, “Method of the direct linearization of mixed nonlinearities”, Journal of Machinery Manufacture and Reliability, 46:2 (2017), 128–131 | DOI
[18] A. A. Alifov, “On the calculation of oscillating systems with limited power-supply by direct linearization methods”, Problemy mashinostroeniya i avtomatizatsii – Engineering Automation Problems, 2017, no. 4, 92–97
[19] A. A. Alifov, M. G. Farzaliev, E. N. Jafarov, “Dynamics of a self-oscillatory system with an energy source”, Russian Engineering Research, 38:4 (2018), 260–262 | DOI
[20] A. A. Alifov, “About application of methods of direct linearization for calculation of interaction of nonlinear oscillatory systems with energy sources”, Proc. of the Second International Symposium of Mechanism and Machine Science, ISMMS 2017 (September 11–14, 2017, Baku, Azerbaijan), AzTU, Baku, 218–221
[21] V. F. Zhuravlev, D. M. Klimov, Applied methods in the theory of oscillations, Nauka, M., 1988 | MR
[22] K. V. Frolov, Selected Works, v. 1, Nauka, M., 2007
[23] V. A. Kudinov, Machine dynamics, Mashinostroenie, M., 1967
[24] Ya. I. Koritysskiy, “Torsional self-oscillations of exhaust devices spinning machines with boundary friction in the sliding bearings”, Nelineynye kolebaniya i perekhodnye protsessy v mashinakh, Nauka, M., 1972
[25] M. A. Bronovets, V. F. Zhuravlev, “On self-excited vibrations in friction force measurement systems”, Izv. RAN. MTT – Mechanics of Solids, 2012, no. 3, 3–11