Keywords: centralizer of an element, involution, Sylow and Hall subgroups.
@article{VTGU_2020_68_a2,
author = {A. I. Zabarina and E. A. Fomina},
title = {On the set $K_{p}$ in finite groups},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {33--40},
year = {2020},
number = {68},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_68_a2/}
}
A. I. Zabarina; E. A. Fomina. On the set $K_{p}$ in finite groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 68 (2020), pp. 33-40. http://geodesic.mathdoc.fr/item/VTGU_2020_68_a2/
[1] Zabarina A.I., Guselnikova U.A., Fomina E.A., “On commuting elements of a group”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2015, no. 6(38), 27–32 | DOI
[2] Zabarina A.I., Fomina E.A., “On the set $K_3(G)$ of finite groups' elements commuting exactly with three elements”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2018, no. 55, 5–11 | DOI | MR
[3] Kargapolov M.I., Merzlyakov Y.I., Foundations of the group theory, Nauka, M., 1982 | MR
[4] Shneperman L.B., A course of algebra and number theory in problems and exercises, Vysheyshaya shkola, Minsk, 1987 | MR
[5] Hall M., The Theory of Groups, The Macmillan Company, New York, 1959 | MR | Zbl
[6] Gorenstein D., Finite Simple Groups: An Introduction to Their Classification, Springer Science Business Media, New York, 1982 | MR
[7] Belonogov V.A., Fomin A.N., Matrix representations in the theory of finite groups, Nauka, M., 1976, 126 pp. | MR
[8] Chekhlov A.R., Exercises on foundations of the group theory, TGU, Tomsk, 2004