On the set $K_{p}$ in finite groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 68 (2020), pp. 33-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The properties of the set $K_{p}$ consisting of elements of a non-Abelian group commuting with exactly $p$ elements of the group are considered. In particular, the properties of the set $K_{p}$ in permutation groups and some solvable groups. One more proof is given that all involutions of a finite simple non-Abelian group $G$ with a nonempty set $K_{3}$ form one conjugacy class.
Mots-clés : group
Keywords: centralizer of an element, involution, Sylow and Hall subgroups.
@article{VTGU_2020_68_a2,
     author = {A. I. Zabarina and E. A. Fomina},
     title = {On the set $K_{p}$ in finite groups},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {33--40},
     year = {2020},
     number = {68},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_68_a2/}
}
TY  - JOUR
AU  - A. I. Zabarina
AU  - E. A. Fomina
TI  - On the set $K_{p}$ in finite groups
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 33
EP  - 40
IS  - 68
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_68_a2/
LA  - ru
ID  - VTGU_2020_68_a2
ER  - 
%0 Journal Article
%A A. I. Zabarina
%A E. A. Fomina
%T On the set $K_{p}$ in finite groups
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 33-40
%N 68
%U http://geodesic.mathdoc.fr/item/VTGU_2020_68_a2/
%G ru
%F VTGU_2020_68_a2
A. I. Zabarina; E. A. Fomina. On the set $K_{p}$ in finite groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 68 (2020), pp. 33-40. http://geodesic.mathdoc.fr/item/VTGU_2020_68_a2/

[1] Zabarina A.I., Guselnikova U.A., Fomina E.A., “On commuting elements of a group”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2015, no. 6(38), 27–32 | DOI

[2] Zabarina A.I., Fomina E.A., “On the set $K_3(G)$ of finite groups' elements commuting exactly with three elements”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2018, no. 55, 5–11 | DOI | MR

[3] Kargapolov M.I., Merzlyakov Y.I., Foundations of the group theory, Nauka, M., 1982 | MR

[4] Shneperman L.B., A course of algebra and number theory in problems and exercises, Vysheyshaya shkola, Minsk, 1987 | MR

[5] Hall M., The Theory of Groups, The Macmillan Company, New York, 1959 | MR | Zbl

[6] Gorenstein D., Finite Simple Groups: An Introduction to Their Classification, Springer Science Business Media, New York, 1982 | MR

[7] Belonogov V.A., Fomin A.N., Matrix representations in the theory of finite groups, Nauka, M., 1976, 126 pp. | MR

[8] Chekhlov A.R., Exercises on foundations of the group theory, TGU, Tomsk, 2004