Numerical simulation of unstable safety valve modes
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 68 (2020), pp. 141-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

When designing pressure regulators, one needs to have a complete understanding of gas-dynamic processes. The numerical algorithm for three-dimensional gas-dynamic modeling of a full cycle of spring safety valve operation is proposed, which allows one to significantly reduce the computing time. Grid reconfiguration during CFD modeling is provided by interpolation procedure using previously calculated grids. Calculations show that gas-dynamic numerical simulation should account for a three-dimensional structure of the unsteady flow and the motion of the disc. These factors are taken into account when calculating full cycle of the valve on a coarse grid with the use of correction functions for the force and flow characteristics of the valve. The correction functions are calculated by the false transient method in the three-dimensional formulation. Cyclograms of the valve operation demonstrate satisfactory agreement of the experimental and numerical simulation results. The agreement in the variation of gas-dynamic forces with time is observed, except for the transitional regime before the valve starts to close. In the main work area, the calculated values of the reduced force belong to a confidence interval.
Keywords: safety valve, numerical simulation, dynamic process, Godunov method, MUSCL scheme.
@article{VTGU_2020_68_a12,
     author = {T. Raeder and V. A. Tenenev and A. A. Chernova},
     title = {Numerical simulation of unstable safety valve modes},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {141--157},
     year = {2020},
     number = {68},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_68_a12/}
}
TY  - JOUR
AU  - T. Raeder
AU  - V. A. Tenenev
AU  - A. A. Chernova
TI  - Numerical simulation of unstable safety valve modes
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 141
EP  - 157
IS  - 68
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_68_a12/
LA  - ru
ID  - VTGU_2020_68_a12
ER  - 
%0 Journal Article
%A T. Raeder
%A V. A. Tenenev
%A A. A. Chernova
%T Numerical simulation of unstable safety valve modes
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 141-157
%N 68
%U http://geodesic.mathdoc.fr/item/VTGU_2020_68_a12/
%G ru
%F VTGU_2020_68_a12
T. Raeder; V. A. Tenenev; A. A. Chernova. Numerical simulation of unstable safety valve modes. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 68 (2020), pp. 141-157. http://geodesic.mathdoc.fr/item/VTGU_2020_68_a12/

[1] A. Beune, Analysis of high-pressure safety valves, Technische Universiteit Eindhoven, Eindhoven, 2009, 134 pp. | DOI

[2] X. G. Song, L. T. Wang, Y. C. Park, W. Sun, “A fluid-structure interaction analysis of the springloaded pressure safety valve during popping off”, 14th International Conference on Pressure Vessel Technology, Procedia Engineering, 130, 2015, 87–94 | DOI

[3] C. J. Hos, A. R. Champneys, K. Paulc, M. McNeelyc, “Dynamic behavior of direct spring loaded pressure relief valves in gas service: Model development, measurements and instability mechanisms”, Journal of Loss Prevention in the Process Industries, 31 (2014), 70–81 | DOI

[4] C. J. Hos, A. R. Champneys, K. Paul, M. McNeely, “Dynamic behaviour of direct spring loaded pressure relief valves: III valves in liquid service”, Journal of Loss Prevention in the Process Industries, 43 (2016), 1–9 | DOI

[5] S. Dimitrov, M. Komitovski, “Static and dynamic characteristics of direct operated pressure relief valves”, Machine Design, 5:2 (2013), 83–86

[6] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Krayko, G. P. Prokopov, Numerical solution of multidimensional gas dynamics problems, Nauka, M., 1976 | MR

[7] A. V. Safronov, Yu. V. Fomin, “Method for the numerical solution of gas dynamics equations using the discontinuity relation”, Trudy MFTI – Proceedings of MIPT, 2:2 (2010), 137–148

[8] G. D. van Albada, B. van Leer, W. W. Roberts Jr., “A comparative study of computational methods in cosmic gas dynamics”, Astronomy and Astrophysics, 108:1 (1982), 76–84 | Zbl

[9] P. Wesseling, Principles of Computational Fluid Dynamics, Springer-Verlag, Berlin, 2001, 644 pp. | MR

[10] P. Wesseling, A. Segal, C. G. M. Kassel, “Computing flows on general three-dimensional nonsmooth staggered grids”, Journal of Computational Physics, 149 (1999), 333–362 | DOI | MR | Zbl

[11] K. N. Volkov, V. N. Emel'yanov, Modeling of large vortices in calculations of turbulent flows, Fizmatlit, M., 2008

[12] T. Reader, V. A. Tenenev, N. V. Paklina, “Numerical 3D simulation of safety valve gas dynamics”, Vestnik IzhGTU imeni M.T. Kalashnikova – Bulletin of Kalashnikov ISTU, 21:4 (2018), 174–181 | DOI | DOI