@article{VTGU_2020_68_a12,
author = {T. Raeder and V. A. Tenenev and A. A. Chernova},
title = {Numerical simulation of unstable safety valve modes},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {141--157},
year = {2020},
number = {68},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_68_a12/}
}
TY - JOUR AU - T. Raeder AU - V. A. Tenenev AU - A. A. Chernova TI - Numerical simulation of unstable safety valve modes JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2020 SP - 141 EP - 157 IS - 68 UR - http://geodesic.mathdoc.fr/item/VTGU_2020_68_a12/ LA - ru ID - VTGU_2020_68_a12 ER -
T. Raeder; V. A. Tenenev; A. A. Chernova. Numerical simulation of unstable safety valve modes. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 68 (2020), pp. 141-157. http://geodesic.mathdoc.fr/item/VTGU_2020_68_a12/
[1] A. Beune, Analysis of high-pressure safety valves, Technische Universiteit Eindhoven, Eindhoven, 2009, 134 pp. | DOI
[2] X. G. Song, L. T. Wang, Y. C. Park, W. Sun, “A fluid-structure interaction analysis of the springloaded pressure safety valve during popping off”, 14th International Conference on Pressure Vessel Technology, Procedia Engineering, 130, 2015, 87–94 | DOI
[3] C. J. Hos, A. R. Champneys, K. Paulc, M. McNeelyc, “Dynamic behavior of direct spring loaded pressure relief valves in gas service: Model development, measurements and instability mechanisms”, Journal of Loss Prevention in the Process Industries, 31 (2014), 70–81 | DOI
[4] C. J. Hos, A. R. Champneys, K. Paul, M. McNeely, “Dynamic behaviour of direct spring loaded pressure relief valves: III valves in liquid service”, Journal of Loss Prevention in the Process Industries, 43 (2016), 1–9 | DOI
[5] S. Dimitrov, M. Komitovski, “Static and dynamic characteristics of direct operated pressure relief valves”, Machine Design, 5:2 (2013), 83–86
[6] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Krayko, G. P. Prokopov, Numerical solution of multidimensional gas dynamics problems, Nauka, M., 1976 | MR
[7] A. V. Safronov, Yu. V. Fomin, “Method for the numerical solution of gas dynamics equations using the discontinuity relation”, Trudy MFTI – Proceedings of MIPT, 2:2 (2010), 137–148
[8] G. D. van Albada, B. van Leer, W. W. Roberts Jr., “A comparative study of computational methods in cosmic gas dynamics”, Astronomy and Astrophysics, 108:1 (1982), 76–84 | Zbl
[9] P. Wesseling, Principles of Computational Fluid Dynamics, Springer-Verlag, Berlin, 2001, 644 pp. | MR
[10] P. Wesseling, A. Segal, C. G. M. Kassel, “Computing flows on general three-dimensional nonsmooth staggered grids”, Journal of Computational Physics, 149 (1999), 333–362 | DOI | MR | Zbl
[11] K. N. Volkov, V. N. Emel'yanov, Modeling of large vortices in calculations of turbulent flows, Fizmatlit, M., 2008
[12] T. Reader, V. A. Tenenev, N. V. Paklina, “Numerical 3D simulation of safety valve gas dynamics”, Vestnik IzhGTU imeni M.T. Kalashnikova – Bulletin of Kalashnikov ISTU, 21:4 (2018), 174–181 | DOI | DOI