Mathematical modeling on ignition of metallized solid propellant by a convective high temperature flow
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 68 (2020), pp. 126-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents a mathematical model and a methodology to calculate stationary combustion of a metallized solid propellant with aluminum additives ignited by a high-temperature convective flow. The study considers the ignition of a semi-infinite slab of the metallized solid propellant which is blown over by an unlimited high-temperature flow. A boundary-layer approximation is used to develop the ignition model. The high-temperature blowing effect is taken into account in the model by means of turbulent heat and mass transfer. The paper provides a numerical and theoretical analysis on the impact of the velocity and temperature of the convective flow on the ignition time delay and the stationary combustion mode establishment. The analysis shows that the proposed approach allows calculating the time of the ignition delay and stationary combustion mode establishment for the metallized solid propellant. Moreover the ignition delay and the period of the stationary combustion mode establishment are found to be controlled by both the velocity and temperature of the convective flow.
Keywords: ignition, metallized solid propellant, mathematical model, velocity, blowing flow, high-temperature flow, convective flow.
@article{VTGU_2020_68_a11,
     author = {V. A. Poryazov and A. Yu. Krainov},
     title = {Mathematical modeling on ignition of metallized solid propellant by a convective high temperature flow},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {126--140},
     year = {2020},
     number = {68},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_68_a11/}
}
TY  - JOUR
AU  - V. A. Poryazov
AU  - A. Yu. Krainov
TI  - Mathematical modeling on ignition of metallized solid propellant by a convective high temperature flow
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 126
EP  - 140
IS  - 68
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_68_a11/
LA  - ru
ID  - VTGU_2020_68_a11
ER  - 
%0 Journal Article
%A V. A. Poryazov
%A A. Yu. Krainov
%T Mathematical modeling on ignition of metallized solid propellant by a convective high temperature flow
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 126-140
%N 68
%U http://geodesic.mathdoc.fr/item/VTGU_2020_68_a11/
%G ru
%F VTGU_2020_68_a11
V. A. Poryazov; A. Yu. Krainov. Mathematical modeling on ignition of metallized solid propellant by a convective high temperature flow. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 68 (2020), pp. 126-140. http://geodesic.mathdoc.fr/item/VTGU_2020_68_a11/

[1] V. I. Rozenband, V. V. Barzykin, A. G. Merzhanov, “Ignition of condensed substances by convective heat fluxes of medium intensity under dynamic conditions”, Combustion, Explosion, and Shock Waves, 4:2 (1968), 96–99 | DOI

[2] V. E. Zarko, V. F. Mikheev, A. I. Sukhinin, S. S. Khlevnoi, “Hot-gas ignition of powders”, Combustion, Explosion, and Shock Waves, 7:1 (1973), 55–57 | DOI

[3] A. V. Zakharevich, P. A. Strizhak, S. V. Syrodoi, V. V. Salomatov, “Ignition of the drops of coal-water fuel in a flow of air”, Solid Fuel Chemistry, 50:3 (2016), 163–166 | DOI

[4] L. K. Gusachenko, V. E. Zarko, A. D. Rychkov, “Ignition and extinction of homogeneous energetic materials by a light pulse”, Combustion, Explosion and Shock Waves, 48:1 (2012), 73–80 | DOI | MR

[5] R. S. Burkina, A. M. Domukhovskii, “Effect of structural changes of the surface layer of a condensed material ignited by a powerful radiation pulse”, Combustion, Explosion and Shock Waves, 48:5 (2012), 602–608 | DOI

[6] V. A. Poryazov, A. Yu. Krainov, “Calculation of the ignition stages and steady-state combustion of a metallized solid propellant under laser radiation”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2019, no. 59, 94–104 | DOI | MR

[7] D. O. Glushkov, G. V. Kuznetsov, P. A. Strizhak, “Stability of composite solid propellant ignition by a local source of limited energy capacity”, Combustion, Explosion and Shock Waves, 50:6 (2014), 670–675 | DOI

[8] A. V. Zakharevich, V. T. Kuznetsov, G. V. Kuznetsov, V. I. Maksimov, “Ignition of model composite propellants by a single particle heated to high temperatures”, Combustion, Explosion and Shock Waves, 44:5 (2008), 543–546 | DOI

[9] V. N. Vilyunov, Theory of ignitionof condensed materials, Nauka, M., 1984

[10] Ya. B. Zel'dovich, “Theory of propellant combustion in a gas flow”, Combustion, Explosion, and Shock Waves, 7:4 (1974), 399–408 | DOI

[11] V. N. Vilyunov, “To the theory of erosive combustion of gunpowder”, Doklady AN SSSR, 136:2 (1961), 381–383

[12] V. K. Bulgakov, A. M. Lipanov, Theory of erosive combustion of solid rocket propellants, Nauka, M., 2001

[13] V. A. Poryazov, A. Yu. Krainov, “Mathematical model and calculation of the unsteady combustion rate of the metallized solid rocket propellants”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2017, no. 50, 99–111 | DOI | MR

[14] V. A. Poryazov, D. A. Krainov, “Mathematical modeling of the erosive burning of metallized solid propellants”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2019, no. 58, 119–127 | DOI | MR

[15] E. R. van Driest, “On turbulent flow near a wall”, AIAA Journal Special Supplement: Centennial of Power Flight, 23:11 (1956), 1007–1011 | DOI | Zbl

[16] H. Schlichting, K. Gersten, Boundary Layer Theory, 8th ed., Springer-Verlag, 2004 | MR

[17] I. P. Ginzburg, Theory of resistance and heat transfer, L., 1970