On determinability of a completely decomposable rank $2$ group by its automorphism group
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 68 (2020), pp. 23-32

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions are found under which two completely decomposable torsion-free Abelian groups of rank $2$ have isomorphic automorphism groups. An answer is obtained to the question of under what conditions a completely decomposable Abelian group of rank $2$ is uniquely determined by its group of automorphisms.
Mots-clés : matrix, automorphism group.
Keywords: involution, completely decomposable group
@article{VTGU_2020_68_a1,
     author = {V. K. Vildanov and V. A. Gaidak and E. A. Timoshenko},
     title = {On determinability of a completely decomposable rank $2$ group by its automorphism group},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {23--32},
     publisher = {mathdoc},
     number = {68},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_68_a1/}
}
TY  - JOUR
AU  - V. K. Vildanov
AU  - V. A. Gaidak
AU  - E. A. Timoshenko
TI  - On determinability of a completely decomposable rank $2$ group by its automorphism group
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 23
EP  - 32
IS  - 68
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_68_a1/
LA  - ru
ID  - VTGU_2020_68_a1
ER  - 
%0 Journal Article
%A V. K. Vildanov
%A V. A. Gaidak
%A E. A. Timoshenko
%T On determinability of a completely decomposable rank $2$ group by its automorphism group
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 23-32
%N 68
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2020_68_a1/
%G ru
%F VTGU_2020_68_a1
V. K. Vildanov; V. A. Gaidak; E. A. Timoshenko. On determinability of a completely decomposable rank $2$ group by its automorphism group. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 68 (2020), pp. 23-32. http://geodesic.mathdoc.fr/item/VTGU_2020_68_a1/