Investigation of a hydrodynamic entrance region for a power-law fluid flow in a round pipe
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 67 (2020), pp. 78-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents a study of the Ostwald-de Waele fluid flow in a round pipe with a uniform velocity profile specified at the inlet section. Mathematical formulation of the problem is presented using dimensionless variables. A numerical algorithm is developed on the basis of the finite volume method and SIMPLE procedure. Parametric studies of the flow are carried out for the Reynolds number varying from 0.1 to 80 and the power-law index varying from 0.2 to 1.5. It is shown that the flow can be distinguished into a developing flow zone in the inlet boundary vicinity and a fully developed flow zone in the rest part of the flow region. Dependency diagrams are plotted for the development length depending on the power-law index and Reynolds number. The first diagram is found to be non-monotonic. The development length is shown to be almost linearly dependent on the Reynolds number in the range from 1 to 80. In the region of low Reynolds numbers, the length remains almost uniform. The agreement of the obtained numerical results with data from other studies is shown.
Keywords: power-law fluid, pipe, hydrodynamic entrance region, finite volume method, parametric studies.
@article{VTGU_2020_67_a7,
     author = {E. I. Borzenko and D. N. Garbuzov},
     title = {Investigation of a hydrodynamic entrance region for a power-law fluid flow in a round pipe},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {78--88},
     year = {2020},
     number = {67},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_67_a7/}
}
TY  - JOUR
AU  - E. I. Borzenko
AU  - D. N. Garbuzov
TI  - Investigation of a hydrodynamic entrance region for a power-law fluid flow in a round pipe
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 78
EP  - 88
IS  - 67
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_67_a7/
LA  - ru
ID  - VTGU_2020_67_a7
ER  - 
%0 Journal Article
%A E. I. Borzenko
%A D. N. Garbuzov
%T Investigation of a hydrodynamic entrance region for a power-law fluid flow in a round pipe
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 78-88
%N 67
%U http://geodesic.mathdoc.fr/item/VTGU_2020_67_a7/
%G ru
%F VTGU_2020_67_a7
E. I. Borzenko; D. N. Garbuzov. Investigation of a hydrodynamic entrance region for a power-law fluid flow in a round pipe. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 67 (2020), pp. 78-88. http://geodesic.mathdoc.fr/item/VTGU_2020_67_a7/

[1] Schiller L., “Untersuchungen uber laminare und turbulente Stromung”, ZAMM - Zeitschrift fur Angew. Math. und Mech., 2:6 (1922), 478–478 | DOI

[2] Poole R. J., Ridley B. S., “Development-length requirements for fully developed laminar pipe flow of inelastic non-Newtonian liquids”, J. Fluids Eng. Trans. ASME, 129:10 (2007), 1281–1287 | DOI

[3] Durst F. et al., “The development lengths of laminar pipe and channel flows”, J. Fluids Eng. Trans. ASME, 127:6 (2005), 1154–1160 | DOI

[4] Fernandes C. et al., “Development length in planar channel flows of inelastic non-Newtonian fluids”, J. Nonnewton. Fluid Mech., 255 (2018), 13–18 | DOI | MR

[5] Chebbi R., “Laminar flow of power-law fluids in the entrance region of a pipe”, Chem. Eng. Sci., 57:21 (2002), 4435–4443 | DOI

[6] Capobianchi M., McGah P., “Developing Region Solution for High Reynolds Number Laminar Flows of Pseudoplastic and Dilatant Fluids in Circular Ducts”, J. Fluids Eng., 139:4 (2017) | DOI

[7] Ookawara S. et al., “Unified Entry Length Correlation for Newtonian, Power Law and Bingham Fluids in Laminar Pipe Flow at Low Reynolds Number”, J. Chem. Eng. JAPAN, 33:4 (2000), 675–678 | DOI

[8] Poole R. J., Chhabra R. P., “Development Length Requirements for Fully Developed Laminar Pipe Flow of Yield Stress Fluids”, J. Fluids Eng., 132:3 (2010) | DOI | MR

[9] Bird R. B., Dai G. C., Yarusso B. J., “The Rheology and Flow of Viscoplastic Materials”, Rev. Chem. Eng., 1:1 (1983), 1–70 | DOI

[10] Patankar S.V., Numerical methods for solving problems of heat transfer and fluid dynamics, Energoatomizdat, M., 1988

[11] Godunov S.K., Ryabenkiy V.S., Difference Schemes, Elsevier Science Ltd., North-Holland, 1987 | MR | MR

[12] Borzenko E.I., Diakova O.A., “Investigation of viscous fluid flow in T-shaped channel with no slip/slip boundary conditions on the solid wall”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2016, no. 4(42), 58–69 | DOI

[13] Yankov V.I., Boyarchenko V.I., Pervadchyuk V.P., Glot I.O., Shakirov N.V., Processing of fiber-forming polymers. Fundamentals of the rheology of polymers and the flow of polymers in channels, Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2008

[14] Chen-I Hung, Yeong-Yan Perng, “Flow of non-Newtonian fluid in the entrance region of a tube with porous walls”, Int. J. Heat Fluid Flow, 12:3 (1991), 263–268 | DOI

[15] Matras Z., Nowak Z., “Laminar entry length problem for power law fluids”, Acta Mech., 48:1–2 (1983), 81–90 | DOI | Zbl