On projectively inert subgroups of completely decomposable finite rank groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 67 (2020), pp. 63-68

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a group $G$ be a finite direct sum of torsion-free rank $1$ groups $G_{i}$. It is proved that every projectively inert subgroup of $G$ is commensurate with a fully invariant subgroup if and only if all $G_{i}$ are not divisible by any prime number $p$, and for different subgroups $G_{i}$ and $G_{j}$ their types are either equal or incomparable.
Keywords: projectively inert subgroup, fully invariant subgroup, commensurable subgroups, index of the subgroup, completely decomposable group.
@article{VTGU_2020_67_a5,
     author = {A. R. Chekhlov and O. V. Ivanets},
     title = {On projectively inert subgroups of completely decomposable finite rank groups},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {63--68},
     publisher = {mathdoc},
     number = {67},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_67_a5/}
}
TY  - JOUR
AU  - A. R. Chekhlov
AU  - O. V. Ivanets
TI  - On projectively inert subgroups of completely decomposable finite rank groups
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 63
EP  - 68
IS  - 67
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_67_a5/
LA  - ru
ID  - VTGU_2020_67_a5
ER  - 
%0 Journal Article
%A A. R. Chekhlov
%A O. V. Ivanets
%T On projectively inert subgroups of completely decomposable finite rank groups
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 63-68
%N 67
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2020_67_a5/
%G ru
%F VTGU_2020_67_a5
A. R. Chekhlov; O. V. Ivanets. On projectively inert subgroups of completely decomposable finite rank groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 67 (2020), pp. 63-68. http://geodesic.mathdoc.fr/item/VTGU_2020_67_a5/