Investigation of some classes of second order partial integro-differential equations with a power-logarithmic singularity in the kernel
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 67 (2020), pp. 40-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a class of second-order partial integro-differential equations with a power singularity and logarithmic singularity in the kernel, integral representations of the solution manifold in terms of arbitrary constants are obtained in the class of functions vanishing with a certain asymptotic behavior. Although the kernel of the given equation is not a Fredholm type kernel, the solution of the studied equation in a class of vanishing functions is found in an explicit form. We represent a second-order integro-differential equation as a product of two first-order integro-differential operators. For these one-dimensional integro-differential operators, in the cases when the roots of the corresponding characteristic equations are real and different, real and equal and complex and conjugate, the inverse operators are found. It is found that the presence of power singularity and logarithmic singularity in the kernel affects the number of arbitrary constants in the general solution. This number, depending on the roots of the corresponding characteristic equations, can reach nine. Also, the cases when the given integro-differential equation has a unique solution are found. The correctness of the obtained results with the help of the detailed solutions of concrete examples are shown. The method of solving the given problem can be used for solving model and nonmodel integro-differential equations with a higher order power singularity and logarithmic singularity in the kernel.
Keywords: integro-differential equation, power singularity, logarithmic singularity, integral representations, characteristic equation.
@article{VTGU_2020_67_a3,
     author = {S. K. Zarifzoda and R. N. Odinaev},
     title = {Investigation of some classes of second order partial integro-differential equations with a power-logarithmic singularity in the kernel},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {40--54},
     year = {2020},
     number = {67},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_67_a3/}
}
TY  - JOUR
AU  - S. K. Zarifzoda
AU  - R. N. Odinaev
TI  - Investigation of some classes of second order partial integro-differential equations with a power-logarithmic singularity in the kernel
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 40
EP  - 54
IS  - 67
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_67_a3/
LA  - ru
ID  - VTGU_2020_67_a3
ER  - 
%0 Journal Article
%A S. K. Zarifzoda
%A R. N. Odinaev
%T Investigation of some classes of second order partial integro-differential equations with a power-logarithmic singularity in the kernel
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 40-54
%N 67
%U http://geodesic.mathdoc.fr/item/VTGU_2020_67_a3/
%G ru
%F VTGU_2020_67_a3
S. K. Zarifzoda; R. N. Odinaev. Investigation of some classes of second order partial integro-differential equations with a power-logarithmic singularity in the kernel. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 67 (2020), pp. 40-54. http://geodesic.mathdoc.fr/item/VTGU_2020_67_a3/

[1] V. Volterra, Theory of Functionals and of Integral and Integro-Differential Equations, Dover, 2005 | MR

[2] V. M. Kakhktsyan, A. Kh. Khachatryan, “Analytical-numerical solution of a nonlinear integrodifferential equation in econometrics”, Computational Mathematics and Mathematical Physics, 53:7 (2013), 933–936 | DOI | DOI | MR | Zbl

[3] I. N. Vekua, “On the Prandtl integrodifferential equation”, Prikladnaya matematika i mekhanika, 9:2 (1945), 143–150 | MR | Zbl

[4] L. G. Magnaradze, “On a new integral equation of the aircraft wing theory”, Soobshcheniya Akademii nauk Gruzinskoy SSR, 3:6 (1942), 503–508 | MR | Zbl

[5] S. K. Godunov, U. M. Sultangazin, “On discrete models of the Boltzmann kinetic equation”, Uspekhi matematicheskikh nauk, 26:3 (159) (1971), 3–51 | MR | Zbl

[6] V. V. Vlasov, N. A. Rautian, A. S. Shamaev, “Spectral analysis and correct solvability of abstract integro-differential equations arising in thermophysics and acoustics”, Sovremennaya matematika. Fundamental'nyye napravleniya, 39 (2011), 36–65

[7] X. R. Oton, Integro-Differential Equations: Regularity Theory and Pohozaev Identities, Dissertation, Universitat Politecnica de Catalunya, Barcelona, 2014, 301 pp.

[8] A. A. Bobodzhanov, V. F. Safonov, “A problem with inverse time for a singularly perturbed integro-differential equation with diagonal degeneration of the kernel of high order”, Izvestiya: Mathematics, 80:2 (2016), 285 | DOI | DOI | MR | Zbl

[9] D. A. Tursunov, U. Z. Erkebaev, “Asymptotic expansion of the solution of the Dirichlet problem for a ring with a singularity at the boundary”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2016, no. 1 (39), 42–52 | DOI

[10] D. A. Tursunov, “Asymptotics of the solution of the singularly perturbed Cauchy problem in the case of a change in the stability, when the eigenvalues have poles”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 59 (2019), 16–28 | DOI

[11] N. N. Nefedov, A. G. Nikitin, “The initial boundary value problem for a nonlocal singularly perturbed reaction-diffusion equation”, Computational Mathematics and Mathematical Physics, 52:6 (2012), 926–931 | DOI | MR | Zbl

[12] V. I. Kachalov, “On the holomorphic regularization of singularly perturbed systems of differential equations”, Computational Mathematics and Mathematical Physics, 57:4 (2017), 653–660 | DOI | DOI | MR | Zbl

[13] M. I. Besova, “On a method of solving singularly perturbed boundary value problems”, Differentsial'nyye uravneniya i protsessy upravleniya, 2019, no. 2, 45–55 | MR | Zbl

[14] T. K. Yuldashev, “Inverse problem for a nonlinear integrodifferential equation of the third order”, Vestnik Samarskogo gosudarstvennogo universiteta. Estestvennonauchnaya seriya, 2013, no. 1, 58–66 | MR | Zbl

[15] C. Bianca, M. Ferrara, L. Guerrini, “The asymptotic limit of an integro-differential equation modelling complex systems”, Izvestiya: Mathematics, 78:6 (2014), 1105–1119 | DOI | DOI | MR | Zbl

[16] P. N. Burago, A. I. Egamov, “On the connection between solutions of initial boundary-value problems for a class of integro-differential partial differential equations and a linear hyperbolic equation”, Zhurnal SVMO, 21:4 (2019), 413–429 | DOI

[17] T. A. Belkina, N. B. Konyukhova, S. V. Kurochkin, “Singular boundary value problem for the integrodifferential equation in an insurance model with stochastic premiums: Analysis and numerical solution”, Computational Mathematics and Mathematical Physics, 52:10 (2012), 1384–1416 | DOI | MR | Zbl

[18] S. N. Askhabov, “Singular integro-differential equations with a Hilbert kernel and monotonic nonlinearity”, Vladikavkazskiy matematicheskiy zhurnal, 19:3 (2017), 11–20 | MR | Zbl

[19] N. Radzhabov, Volterra type integral equations with boundary and interior fixed singularity and super-singularity kernels and their applications, Devashtich, Dushanbe, 2007, 221 pp.

[20] L. N. Radzhabova, N. Radzhabov, O. A. Repin, “On a class of two-dimensional adjoint integral equations of Volterra type”, Differential Equations, 47:3 (2011), 1333–1343 | DOI | MR | Zbl

[21] S. K. Zaripov, “Construction of an analog of the Fredholm theorem for a class of model first order integro-differential equations with a singular point in the kernel”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2017, no. 46, 24–35 | DOI

[22] S. K. Zaripov, “Construction of analog of a Fredholm theorem for a class of first order model integro-differential equation with a logarithmic singularity in the kernel”, Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Fiziko-matematicheskiye nauki, 21:2 (2017), 236–248 | DOI | Zbl

[23] A. A. Hamoud, K. P. Ghadle, “The approximate solutions of fractional Volterra-Fredholm integro-differential equations by using analytical techniques”, Probl. Anal. Issues Anal., 7(25):1 (2018), 41–58 | DOI | MR | Zbl

[24] M. V. Falaleev, “Degenerate integro-differential convolution type equations in Banach spaces”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 17 (2016), 77–85 | Zbl

[25] N. A. Sidorov, D. N. Sidorov, “On the solvability of a class of Volterra operator equations of the first kind with piecewise continuous kernels”, Mathematical Notes, 96:5 (2014), 811–826 | DOI | MR | Zbl