@article{VTGU_2020_67_a3,
author = {S. K. Zarifzoda and R. N. Odinaev},
title = {Investigation of some classes of second order partial integro-differential equations with a power-logarithmic singularity in the kernel},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {40--54},
year = {2020},
number = {67},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_67_a3/}
}
TY - JOUR AU - S. K. Zarifzoda AU - R. N. Odinaev TI - Investigation of some classes of second order partial integro-differential equations with a power-logarithmic singularity in the kernel JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2020 SP - 40 EP - 54 IS - 67 UR - http://geodesic.mathdoc.fr/item/VTGU_2020_67_a3/ LA - ru ID - VTGU_2020_67_a3 ER -
%0 Journal Article %A S. K. Zarifzoda %A R. N. Odinaev %T Investigation of some classes of second order partial integro-differential equations with a power-logarithmic singularity in the kernel %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2020 %P 40-54 %N 67 %U http://geodesic.mathdoc.fr/item/VTGU_2020_67_a3/ %G ru %F VTGU_2020_67_a3
S. K. Zarifzoda; R. N. Odinaev. Investigation of some classes of second order partial integro-differential equations with a power-logarithmic singularity in the kernel. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 67 (2020), pp. 40-54. http://geodesic.mathdoc.fr/item/VTGU_2020_67_a3/
[1] V. Volterra, Theory of Functionals and of Integral and Integro-Differential Equations, Dover, 2005 | MR
[2] V. M. Kakhktsyan, A. Kh. Khachatryan, “Analytical-numerical solution of a nonlinear integrodifferential equation in econometrics”, Computational Mathematics and Mathematical Physics, 53:7 (2013), 933–936 | DOI | DOI | MR | Zbl
[3] I. N. Vekua, “On the Prandtl integrodifferential equation”, Prikladnaya matematika i mekhanika, 9:2 (1945), 143–150 | MR | Zbl
[4] L. G. Magnaradze, “On a new integral equation of the aircraft wing theory”, Soobshcheniya Akademii nauk Gruzinskoy SSR, 3:6 (1942), 503–508 | MR | Zbl
[5] S. K. Godunov, U. M. Sultangazin, “On discrete models of the Boltzmann kinetic equation”, Uspekhi matematicheskikh nauk, 26:3 (159) (1971), 3–51 | MR | Zbl
[6] V. V. Vlasov, N. A. Rautian, A. S. Shamaev, “Spectral analysis and correct solvability of abstract integro-differential equations arising in thermophysics and acoustics”, Sovremennaya matematika. Fundamental'nyye napravleniya, 39 (2011), 36–65
[7] X. R. Oton, Integro-Differential Equations: Regularity Theory and Pohozaev Identities, Dissertation, Universitat Politecnica de Catalunya, Barcelona, 2014, 301 pp.
[8] A. A. Bobodzhanov, V. F. Safonov, “A problem with inverse time for a singularly perturbed integro-differential equation with diagonal degeneration of the kernel of high order”, Izvestiya: Mathematics, 80:2 (2016), 285 | DOI | DOI | MR | Zbl
[9] D. A. Tursunov, U. Z. Erkebaev, “Asymptotic expansion of the solution of the Dirichlet problem for a ring with a singularity at the boundary”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2016, no. 1 (39), 42–52 | DOI
[10] D. A. Tursunov, “Asymptotics of the solution of the singularly perturbed Cauchy problem in the case of a change in the stability, when the eigenvalues have poles”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 59 (2019), 16–28 | DOI
[11] N. N. Nefedov, A. G. Nikitin, “The initial boundary value problem for a nonlocal singularly perturbed reaction-diffusion equation”, Computational Mathematics and Mathematical Physics, 52:6 (2012), 926–931 | DOI | MR | Zbl
[12] V. I. Kachalov, “On the holomorphic regularization of singularly perturbed systems of differential equations”, Computational Mathematics and Mathematical Physics, 57:4 (2017), 653–660 | DOI | DOI | MR | Zbl
[13] M. I. Besova, “On a method of solving singularly perturbed boundary value problems”, Differentsial'nyye uravneniya i protsessy upravleniya, 2019, no. 2, 45–55 | MR | Zbl
[14] T. K. Yuldashev, “Inverse problem for a nonlinear integrodifferential equation of the third order”, Vestnik Samarskogo gosudarstvennogo universiteta. Estestvennonauchnaya seriya, 2013, no. 1, 58–66 | MR | Zbl
[15] C. Bianca, M. Ferrara, L. Guerrini, “The asymptotic limit of an integro-differential equation modelling complex systems”, Izvestiya: Mathematics, 78:6 (2014), 1105–1119 | DOI | DOI | MR | Zbl
[16] P. N. Burago, A. I. Egamov, “On the connection between solutions of initial boundary-value problems for a class of integro-differential partial differential equations and a linear hyperbolic equation”, Zhurnal SVMO, 21:4 (2019), 413–429 | DOI
[17] T. A. Belkina, N. B. Konyukhova, S. V. Kurochkin, “Singular boundary value problem for the integrodifferential equation in an insurance model with stochastic premiums: Analysis and numerical solution”, Computational Mathematics and Mathematical Physics, 52:10 (2012), 1384–1416 | DOI | MR | Zbl
[18] S. N. Askhabov, “Singular integro-differential equations with a Hilbert kernel and monotonic nonlinearity”, Vladikavkazskiy matematicheskiy zhurnal, 19:3 (2017), 11–20 | MR | Zbl
[19] N. Radzhabov, Volterra type integral equations with boundary and interior fixed singularity and super-singularity kernels and their applications, Devashtich, Dushanbe, 2007, 221 pp.
[20] L. N. Radzhabova, N. Radzhabov, O. A. Repin, “On a class of two-dimensional adjoint integral equations of Volterra type”, Differential Equations, 47:3 (2011), 1333–1343 | DOI | MR | Zbl
[21] S. K. Zaripov, “Construction of an analog of the Fredholm theorem for a class of model first order integro-differential equations with a singular point in the kernel”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2017, no. 46, 24–35 | DOI
[22] S. K. Zaripov, “Construction of analog of a Fredholm theorem for a class of first order model integro-differential equation with a logarithmic singularity in the kernel”, Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Fiziko-matematicheskiye nauki, 21:2 (2017), 236–248 | DOI | Zbl
[23] A. A. Hamoud, K. P. Ghadle, “The approximate solutions of fractional Volterra-Fredholm integro-differential equations by using analytical techniques”, Probl. Anal. Issues Anal., 7(25):1 (2018), 41–58 | DOI | MR | Zbl
[24] M. V. Falaleev, “Degenerate integro-differential convolution type equations in Banach spaces”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 17 (2016), 77–85 | Zbl
[25] N. A. Sidorov, D. N. Sidorov, “On the solvability of a class of Volterra operator equations of the first kind with piecewise continuous kernels”, Mathematical Notes, 96:5 (2014), 811–826 | DOI | MR | Zbl