@article{VTGU_2020_67_a2,
author = {O. V. Zadorozhnaya and V. K. Kochetkov},
title = {Integral representation of solutions of an ordinary differential equation and the {Loewner{\textendash}Kufarev} equation},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {28--39},
year = {2020},
number = {67},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_67_a2/}
}
TY - JOUR AU - O. V. Zadorozhnaya AU - V. K. Kochetkov TI - Integral representation of solutions of an ordinary differential equation and the Loewner–Kufarev equation JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2020 SP - 28 EP - 39 IS - 67 UR - http://geodesic.mathdoc.fr/item/VTGU_2020_67_a2/ LA - ru ID - VTGU_2020_67_a2 ER -
%0 Journal Article %A O. V. Zadorozhnaya %A V. K. Kochetkov %T Integral representation of solutions of an ordinary differential equation and the Loewner–Kufarev equation %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2020 %P 28-39 %N 67 %U http://geodesic.mathdoc.fr/item/VTGU_2020_67_a2/ %G ru %F VTGU_2020_67_a2
O. V. Zadorozhnaya; V. K. Kochetkov. Integral representation of solutions of an ordinary differential equation and the Loewner–Kufarev equation. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 67 (2020), pp. 28-39. http://geodesic.mathdoc.fr/item/VTGU_2020_67_a2/
[1] I. A. Aleksandrov, Methods of geometrical theory of analytical functions, Tomsk State University, Tomsk, 2001
[2] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Singularities of Differentiable Maps, Birkhäuser, Basel, 2012 | MR
[3] I. E. Bazilevich, “On a case of integrability in quadratures of the Loewner-Kufarev equation”, Mathematicheskiy sbornik, 37:3 (1995), 471–476
[4] V. P. Derevenskii, “First-order polynomial differential equations over matrix skew series”, Russian Mathematics, 58:9 (2014), 1–12 | DOI | MR | Zbl
[5] O. V. Zadorozhnaya, V. K. Kochetkov, “The structure of integrals of the second Loewner-Kufarev differential equation in a particular case”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2018, no. 55, 12–21 | DOI | MR
[6] O. V. Zadorozhnaya, V. K. Kochetkov, “Some study methods for ordinary differential equation integrability of the second order of a certain type”, Matematika i matematicheskoye modelirovaniye, 2019, no. 2, 48–62 | DOI
[7] O. V. Zadorozhnaya, V. K. Kochetkov, “Alternative methods of integrability of an ordinary nonlinear differential equation of the first order with a polynomial part”, Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva, 16:2 (2019), 6–14 | DOI
[8] O. V. Zadorozhnaya, V. K. Kochetkov, “A practical method for integral representation of solutions to a homogeneous second-order differential equation”, Innovatsionnyye issledovaniya kak lokomotiv razvitiya sovremennoy nauki: ot teoreticheskikh paradigm k praktike – Innovative investigations as a locomotive of the development of present-day science, 2019, 23–28
[9] Yu. S. Il'yashenko, S. Yu. Yakovenko, Analytical theory of differential equations, MCCME, M., 2013
[10] P. N. Matveev, Lectures on analytical theory of differential equations, LAN, St. Petersburg, 2009