Study of the hydrate formation in a pipeline with insulation coating during gas transfer from the “dome-separator”
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 67 (2020), pp. 144-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper proposes a mathematical model describing the process of the hydrate formation in a vertical pipeline through which the gas is transported from the dome-separator designed to eliminate a technogenic spill of oil from the well at the seabed. If the dome is located in the zone of stable hydrate existence, then hydrate deposits can form within and in the pipeline, which can lead to the pipeline clogging. The influence of the presence of a pipeline insulation coating, which consists of the layers of polyurethane and polyurethane foam, and its thickness on the hydrate formation process in a steel pipeline is studied on the basis of numerical modeling. It is shown that if the gas is derived from the dome located at a depth of 1500 m, the zone of hydrate deposits is formed at the inlet of the pipeline without insulation (in the dome-separator vicinity). When the thermal insulation of the pipeline is used, it leads to an upward shift of the hydrate formation conditions. As a result, depending on the thickness of the insulation coating, the zone of hydrate deposits is formed near the outlet of the pipeline (in the ocean surface vicinity) or no hydrates are formed in the pipe. It is also shown that the motion of the seawater around the pipeline has almost no effect on the process of hydrate formation within the pipe.
Mots-clés : hydrocarbon leak
Keywords: “dome-separator”, gas flow, gas hydrate formation, heat transfer.
@article{VTGU_2020_67_a12,
     author = {A. S. Chiglintseva and A. A. Nasyrov and I. A. Chiglintsev and S. A. Lepikhin and V. V. Koledin},
     title = {Study of the hydrate formation in a pipeline with insulation coating during gas transfer from the {\textquotedblleft}dome-separator{\textquotedblright}},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {144--158},
     year = {2020},
     number = {67},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_67_a12/}
}
TY  - JOUR
AU  - A. S. Chiglintseva
AU  - A. A. Nasyrov
AU  - I. A. Chiglintsev
AU  - S. A. Lepikhin
AU  - V. V. Koledin
TI  - Study of the hydrate formation in a pipeline with insulation coating during gas transfer from the “dome-separator”
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 144
EP  - 158
IS  - 67
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_67_a12/
LA  - ru
ID  - VTGU_2020_67_a12
ER  - 
%0 Journal Article
%A A. S. Chiglintseva
%A A. A. Nasyrov
%A I. A. Chiglintsev
%A S. A. Lepikhin
%A V. V. Koledin
%T Study of the hydrate formation in a pipeline with insulation coating during gas transfer from the “dome-separator”
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 144-158
%N 67
%U http://geodesic.mathdoc.fr/item/VTGU_2020_67_a12/
%G ru
%F VTGU_2020_67_a12
A. S. Chiglintseva; A. A. Nasyrov; I. A. Chiglintsev; S. A. Lepikhin; V. V. Koledin. Study of the hydrate formation in a pipeline with insulation coating during gas transfer from the “dome-separator”. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 67 (2020), pp. 144-158. http://geodesic.mathdoc.fr/item/VTGU_2020_67_a12/

[1] V. G. Griguletskiy, “A brief technological analysis of the accident at well MS-2S2 in the Gulf of Mexico”, Stroitel'stvo neftyanykh i gazovykh skvazhin na sushe i na more, 2011, no. 6, 2–11

[2] V. I. Bogoyavlenskiy, P. S. Barinov, I. V. Bogoyavlenskiy, “Catastrophe in the gulf of Mexico at the Ixtoc field of the Cantarell complex”, Burenie i neft' – Drilling and Oil, 2018, no. 1, 3–13

[3] S. Murawski, C. Ainsworth, S. Gilbert, D. Hollander, C. Paris, M. Schlueter, D. Wetzel (eds), Responses to Future Deep Oil Spills Fighting the Next War: Fighting the Next War, Springer International Publishing, 2020, 542 pp. | DOI

[4] A. Yu. Ivanov, N. V. Terleeva, “Gulf of Mexico oil spill – contribution of remote sensing to emergency monitoring”, Zemlya iz kosmosa: naibolee effektivnye resheniya – Earth from Space: The Most Effective Solutions, 2011, no. 8, 72–79

[5] L. Zheng, P. D. Yapa, F. Chen, “A model for simulating deepwater oil and gas blowouts. Part I: Theory and model formulation”, Journal of Hydraulic Research, 41:4 (2002), 339–351 | DOI

[6] F. H. Chen, P. D. Yapa, “A model for simulating deep water oil and gas blowouts. Part II: Comparison of numerical simulations with “Deepspill” field experiments”, Journal of Hydraulic Research, 41:4 (2003), 353–365 | DOI

[7] P. D. Yapa, L. K. Dasanavaka, U. C. Bandara, K. Nakata, “A model to simulate the transport and fate of gas and hydrates released in deepwater”, Journal of Hydraulic Research, 48:5 (2010), 559–572 | DOI

[8] I. K. Gimaltdinov, S. R. Kildibaeva, “Model of a submerged jet accounting for two limiting schemes of hydrate formation”, Teplofizika i aeromekhanika – Thermophysics and Aeromechanics, 25:1 (2018), 75–83 | DOI | MR | MR

[9] A. V. Zhukov, M. I. Zvonarev, Yu. A. Zhukova, “A method of gas extraction from deep water deposits of gas hydrates”, Mezhdunarodniy zhurnal prikladnykh i fundamental'nykh issledovaniy – International Journal of Applied and Fundamental Research, 2013, no. 10, 16–20

[10] A. A. Nasyrov, “Modelling of filling the “dome-separator” intended for elimination of oil and gas emissions in the seabed zone”, Vestnik Kemerovskogo gosudarstvennogo universiteta – Bulletin of Kemerovo State University, 1:2 (62) (2015), 41–45 | DOI

[11] I. K. Gimaltdinov, S. R. Kildibaeva, “About the theory of initial stage of oil accumulation in a dome-separator”, Thermophysics and Aeromechanics, 22:3 (2015), 387–392 | DOI

[12] I. A. Chiglintsev, A. A. Nasyrov, “Modeling of the process of filling a dome separator with the decomposition of a gas hydrate formed during the mounting of the installation”, Journal of Engineering Physics and Thermophysics, 89:4 (2016), 854–863 | DOI

[13] A. A. Nasyrov, I. A. Chiglintsev, S. A. Lepikhin, “K voprosu razlozheniya gazogidrata v kupole-separatore, prednaznachennom dlya otbora vybrosov uglevodorodov v shelfovoi zone”, Izvestiya Kabardino-Balkarskogo gosudarstvennogo universiteta, 9:1 (2019), 35–41

[14] R. R. Urazov, I. A. Chiglintsev, A. A. Nasyrov, “The influence of the thickness of the wall of the outlet pipe on the hydrate formation at extraction of gas from the “dome-separator””, Vestnik Bashkirskogo universiteta – Bulletin of Bashkir University, 22:2 (2017), 330–335

[15] V. V. Shaydakov, A. L. Sukhonosov, A. R. Lyudvinitskaya, R. D. Dzhafarov, F. V. Dragan, “A mathematical model of the hydrate formation process in a small-diameter pipeline in a quasistatic approximation”, Ekspozitsiya. Neft'. Gaz – Exposition. Oil Gas, 2015, no. 4, 34–37

[16] V. M. Bilyushov, “Mathematical model of hydrate formation in the flow of moist gas in tubes”, Inzhenerno-fizicheskiy zhurnal – Engineering Physics Journal, 46:1 (1984), 46–52

[17] E. A. Bondarev, L. N. Gabysheva, M. A. Kanibolotsky, “Simulation of the formation of hydrates during gas flow in tubes”, Fluid Dynamics, 19:5 (1982), 105–112

[18] V. A. Istomin, Phase equilibria and physicochemical properties of gas hydrates, Izdatel-stvo GGK “Gazprom”, M., 1992

[19] A. Yu. Varaksin, “Fluid dynamics and thermal physics of two-phase flows: problems and achievements (review)”, Teplofizika vysokikh temperatur High Temperature, 51:3 (2013), 377–407 | DOI

[20] R. I. Nigmatulin, Dynamics of multiphase media, v. 1, Nauka, M., 1987

[21] T. M. Bekirov, A. T. Shatalov, Natural gas collection and preparation for transportation, Nedra, M., 1986

[22] V. Sh. Shagapov, B. I. Tazetdinov, O. R. Nurislamov, “A contribution to the theory of gas hydrate particle formation and decomposition in the process of their ascent in water”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2013, no. 6 (26), 106–113

[23] A. I. Guzhov, V. G. Titov, V. F. Medvedev, V. A. Vasil'ev, Collection, transportation, and storage of natural hydrocarbon gases, Nedra, M., 1978

[24] V. Sh. Shagapov, A. S. Chiglintseva, V. R. Syrtlanov, “Possibility of gas washout from a gas-hydrate massif by circulation of warm water”, Journal of Applied Mechanics and Technical Physics, 50:4 (2009), 628–637 | DOI | MR | Zbl

[25] S. S. Kutateladze, Foundations of the heat transfer theory, Atomizdat, M., 1979

[26] S. S. Kutateladze, V. M. Borishanskiy, Heat transfer handbook, Gosenergoizdat, M., 1958

[27] V. Sh. Shagapov, N. G. Musakaev, R. R. Urazov, “Mathematical model of natural gas flow in pipelines with allowance for the dissociation of gas hydrates”, Journal of Engineering Physics and Thermophysics, 81:2 (2008), 287–296 | DOI

[28] V. Sh. Shagapov, R. R. Urazov, “The characteristics of a gas pipeline in the presence of hydrate deposits”, High Temperature, 42:3 (2004), 463–470 | DOI

[29] Sh. K. Gimatudinov, Physics of the oil and gas reservoir, Nedra, M., 1971

[30] S. Sh. Byk, Yu. F. Makogon, V. I. Fomina, Gas hydrates, Khimiya, M., 1980