Numerical investigation of unsteady gasdynamic processes at the launch of solid-propellant rockets
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 67 (2020), pp. 127-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents the results of the methodology developed for calculating unsteady gas-dynamic processes occurring at the launch of missiles, in the gas-dynamic paths of rocket engines, and in the external regions. The method accounts for the variation in the geometry of the solid-propellant charge in the course of solid-propellant rocket engine operation and in the geometry of the computational domain at the rocket launch. The analysis of the unsteady force impact of the supersonic jet on the launch surface is carried out. It is shown that the maximum force action is located in the vicinity of the Mach disks of the unperturbed jet. Numerical studies of gasdynamic processes at the launch of a model solid-propellant booster rocket are implemented including the case when the nozzle plug opening is taken into account. The contribution of the thrust force components at the stage of bootstrap operation is assessed. The presence of the plug at the initial stage of the engine start leads to an abrupt change in the thrust and minor fluctuations, which are damped as the pressure in the combustion chamber rises.
Keywords: solid-propellant rocket engine, unsteady gas dynamics, supersonic jet, mathematical modeling, movable computational grids, Godunov's method, thrust.
@article{VTGU_2020_67_a11,
     author = {K. V. Kostyushin},
     title = {Numerical investigation of unsteady gasdynamic processes at the launch of solid-propellant rockets},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {127--143},
     year = {2020},
     number = {67},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_67_a11/}
}
TY  - JOUR
AU  - K. V. Kostyushin
TI  - Numerical investigation of unsteady gasdynamic processes at the launch of solid-propellant rockets
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 127
EP  - 143
IS  - 67
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_67_a11/
LA  - ru
ID  - VTGU_2020_67_a11
ER  - 
%0 Journal Article
%A K. V. Kostyushin
%T Numerical investigation of unsteady gasdynamic processes at the launch of solid-propellant rockets
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 127-143
%N 67
%U http://geodesic.mathdoc.fr/item/VTGU_2020_67_a11/
%G ru
%F VTGU_2020_67_a11
K. V. Kostyushin. Numerical investigation of unsteady gasdynamic processes at the launch of solid-propellant rockets. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 67 (2020), pp. 127-143. http://geodesic.mathdoc.fr/item/VTGU_2020_67_a11/

[1] A. V. Aliev, G. N. Vakhrushev A. V. Amarantov, Internal ballistics of solid-propellant rocket motors, eds. Lipanov A.M., Milekhin Yu., Mashinostoenie, M., 2007

[2] B. T. Erokhin, Mashinostroenie, M., 1991

[3] K. N. Volkov, V. N. Emel'yanov, Fizmatlit, M., 2012

[4] A. M. Lipanov, V. P. Bobryshev, A. V. Aliev, F. F. Spiridonov, V. D. Lisitsa, A numerical experiment in the theory of solid-propellant rocket motors, UIF Nauka, Ekaterinburg, 1994

[5] A. M. Lipanov, S. Yu. Dadikina, A. A. Shumikhin, M. R. Koroleva, A. I. Karpov, “Numerical simulation intra-chamber of unsteady turbulent flows stimulate. Part 1”, Bulletin SUSU MMCS, 12:1 (2019), 32–43 | DOI | Zbl

[6] I. M. Vasenin, A. Yu. Krainov, A. M. Lipanov, E. R. Shrager, “Method for direct numerical simulation of turbulent gas flows in curvilinear coordinates”, Computational Mathematics and Mathematical Physics, 55:5 (2015), 883–890 | DOI | MR | Zbl

[7] I. M. Shrager, E. R. Glazunov, A. A. Krainov, A. Yu. Krainov, D. A. Vasenin, “Modeling of the Process of Motion of a Scramjet in the Atmosphere”, Russ. Phys. J., 56 (2013), 908–913 | DOI

[8] K. N. Volkov, Yu. N. Deryugin, V. N. Emel'yanov, A. S. Kozelkov, A. G. Karpenko, I. V. Teterina, Difference schemes in problems of gas dynamics on unstructured grids, Fizmatlit, M., 2015

[9] L. L. Minkov, E. R. Shrager, A. E. Kiryushkin, “Two Approaches for Simulating the Burning Surface in Gas Dynamics”, Key Engineering Materials, 685 (2016), 114–118 | DOI

[10] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems, CRC Press, Boca Raton, 2000 | MR

[11] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Krayko, G. P. Prokopov, Numerical solving of multidimensional problems of gas dynamics, Nauka, M., 1976 | MR

[12] K. V. Kostyushin, I. V. Eremin, A. M. Kagenov, K. N. Zhiltsov, I. M. Tyryshkin, M. S. Sereda, A. V. Chervakova, “Method of gas flows calculation in solid propellant rocket engines taking into account the combustion of solid fuel charge”, IOP Conf. Ser.: Mater. Sci., 597:012077 (2019) | DOI

[13] K. V. Kostyushin, V. A. Kotonogov, A. M. Kagenov, I. M. Tyryshkin, A. A. Glazunov, I. V. Eremin, K. N. Zhiltsov, “The universal algorithm for solving the gas dynamics equations on the mesh with arbitrary number of cell faces”, Journal of Physics Conference Series, 1145:1 (2018), 012048 | DOI

[14] A. A. Glazunov, A. M. Kagenov, K. V. Kostyushin, I. V. Eremin, V. A. Kotonogov, K. L. Aligasanova, “Mathematical modeling of the interaction of a single supersonic jet with obstacles”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika — Tomsk State University Journal of Mathematics and Mechanics, 2019, no. 63, 87–101 | DOI