Experimental investigation of the structure, elastic, and strength characteristics of porous corundum ceramics
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 67 (2020), pp. 117-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper aims to investigate the internal structure and to evaluate the elastic and strength characteristics of the corundum ceramic samples sintered at different temperatures. The average value of porosity of the sintered samples at the temperatures of 1400, 1500, and 1600$^{\circ}$C is 33, 26, and 17%, respectively. Mechanical tests of the ceramic samples are performed using the three-point bending method. The ultimate bending strength varies from 135 to 265 MPa in the studied sintering temperature range. The elastic moduli of the sintered samples are found to be in the range of 58–113 GPa. An analysis of the ceramic samples' microstructure is performed using a scanning electron microscope. The dependence of the porosity, pore size, and grain size on the sintering temperature is indicated. The values of strength and elastic modulus of the samples increase nonlinearly with rising sintering temperature in the experiment. Statistical behavior of mechanical properties of the ceramic samples is described using the Weibull analysis. The strength data for the sintering temperatures of 1500 and 1600$^{\circ}$C are well described by the Weibull distribution, and the strength values for a sintering temperature of 1400$^{\circ}$C are described with a significant scatter.
Keywords: alumina, porous ceramics, three-point bending, SEM analysis, flexural strength, Young's modulus.
Mots-clés : microstructure
@article{VTGU_2020_67_a10,
     author = {V. A. Zimina},
     title = {Experimental investigation of the structure, elastic, and strength characteristics of porous corundum ceramics},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {117--126},
     year = {2020},
     number = {67},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_67_a10/}
}
TY  - JOUR
AU  - V. A. Zimina
TI  - Experimental investigation of the structure, elastic, and strength characteristics of porous corundum ceramics
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 117
EP  - 126
IS  - 67
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_67_a10/
LA  - ru
ID  - VTGU_2020_67_a10
ER  - 
%0 Journal Article
%A V. A. Zimina
%T Experimental investigation of the structure, elastic, and strength characteristics of porous corundum ceramics
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 117-126
%N 67
%U http://geodesic.mathdoc.fr/item/VTGU_2020_67_a10/
%G ru
%F VTGU_2020_67_a10
V. A. Zimina. Experimental investigation of the structure, elastic, and strength characteristics of porous corundum ceramics. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 67 (2020), pp. 117-126. http://geodesic.mathdoc.fr/item/VTGU_2020_67_a10/

[1] Okada A., “Ceramic technologies for automotive industry: current status and perspectives”, Mater. Sci. Eng. B, 161 (2009), 182–187 | DOI

[2] Sequeira S., Fernandes M. H., Neves N., Almeida M. M., “Development and characterization of zirconia-alumina composites for orthopedic implants”, Ceram. Int., 43 (2017), 693–703 | DOI

[3] Lukin E.S., Makarov N.A., Kozlov A.I., Popova N.A., Anufrieva E.V., Vartanyan M.A., Kozlov I.A., Safina M.N.,. Lemeshev D.O., Gorelik E.I., “Oxide ceramics of the new generation and areas of application”, Glass and Ceramics, 65:9 (2008), 348–352 | DOI | MR

[4] Krasnyi B.L., Tarasovskii V.P., Krasnyi A.B., Kuteinikova A.L., “Properties of porous permeable ceramic based on monofractional corundum powders and nanodispersed binder”, Glass and Ceramics, 66 (2009), 212–215 | DOI

[5] Zholudev D.S., Grigoriev S.S., Panfilov P.E., Zaytsev D.V., “Rationale for use of ceramics based on alumina by studying its mechanical properties”, Sovremennye problemy nauki i obrazovaniya – Modern Problems of Science and Education, 2014, no. 3, 520

[6] Carter C. B., Norton M. G., Ceramic materials: science and engineering, Springer, New York, 2007, 716 pp.

[7] Basu B., Balani K., Advanced Structural Ceramics, John Wiley Sons, Inc, Hoboken, 2011, 512 pp.

[8] Sevostyanova I.N., Sablina T.Y., Gorbatenko V.V., Kulkov S.N., “Strain localization during diametral compression of ZrO$_2$ (Y$_2$O$_3$)”, Technical Physics Letters, 45 (2019), 943–946 | DOI | DOI

[9] Johnstone C., Ruiz C., “Dynamic testing of ceramics under tensile stress”, Int. J. Solids Struct., 32:17–18 (1995), 2647–2656 | DOI

[10] Sheikh M. Z., Wang Z., Du B., Suo T., Li Y., Zhou F., Wang Y., Dar U. A., Gao G., Wang Y., “Static and dynamic Brazilian disk tests for mechanical characterization of annealed and chemically strengthened glass”, Ceram. Int., 45 (2019), 7931–7944 | DOI

[11] Properties: Alumina-Aluminium Oxide-Al$_2$O$_3$ — A Refractory Ceramic Oxide, (data obrascheniya: 13.04.2020) https://www.azom.com/properties.aspx?ArticleID=52

[12] ISO 17138:2014 (2014) Fine ceramics (advanced ceramics, advanced technical ceramics) – Mechanical properties of ceramic composites at room temperature – Determination of flexural strength

[13] GOST 9550-81. Plastics. Methods for determination of elasticity modulus at strength, compression, and bending, 2004

[14] Grigor'ev M.V., Savchenko N.L., Buyakova S.P., Kul'kov S.N., “Inelastic behavior of ceramics with hierarchical pore structure under compression”, Technical Physics Letters, 43 (2017), 723–726 | DOI | DOI

[15] Smolin I.Yu., Eremin M.O., Makarov P.V., Buyakova S.P., Kulkov S.N., Evtushenko E.P., “Numerical modeling of mechanical behaviour of model brittle porous materials at mesoscale”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2013, no. 5(25), 78–90

[16] Savchenko N., Sevostyanova I., Sablina T., Gomze L., Kulkov S., “The influence of porosity on the elasticity and strength of alumina and zirconia ceramics”, AIP Conference Proceedings, 1623:1 (2014), 547–550 | DOI

[17] Weibull W., “A statistical distribution function of wide applicability”, J. Appl. Mech., 18 (1951), 293–305 | DOI

[18] Le Corre V., Brusselle-Dupend N., Moreaud M., “Numerical modeling of the effective ductile damage of macroporous alumina”, Mech. Mater., 114 (2017), 161–171 | DOI

[19] Curkovic L., Bakic A., Kodvanj J., Haramina T., “Flexural strength of alumina ceramics: Weibull analysis”, Transactions of Famena, 34:1 (2010), 13–19

[20] Meille S., Lombardi M., Chevalier J., Montanaro L., “Mechanical properties of porous ceramics in compression: On the transition between elastic, brittle, and cellular behavior”, J. Eur. Ceram. Soc., 32 (2012), 3959–3967 | DOI