Analytical solution of the Schrödinger integral equation
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 67 (2020), pp. 5-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the question about the use of wave dynamics for solving problems of membrane separation of helium isotopes in the gas state at cryogenic temperatures is considered. The dimensionless form of the stationary Schrodinger differential equation is obtained. Following that, the integral representation form of the wave function is written. This form, which is equivalent to the classical equation, is similar to the integral equation with a degenerate core; however, it contains a modulus of the argument with a shift along the real axis. Using the shift operator, the existing exponential function in the Schrödinger integral equation can be split into a differential operator and an exponential function of the argument module which does not contain a shift. The Fourier identity allows reducing the exponent of the modulus of the argument to a regular exponent. Next, based on the general property of a differential operator acting on an exponent, it is possible to calculate the spectral functions of the problem and write down the distribution for the wave function. This distribution is ultimately expressed through the spectra of the potential barrier. Thereafter, the structure and the spectrum of the composite barrier are considered. With the expression determining the reflection coefficient, it is found that the double-barrier system can have a resonant passage of one of the components in the sequence of distances between the layers of the membrane.
Keywords: integral equation, degenerate kernel, shift operator, exponential functions, Fourier identity.
@article{VTGU_2020_67_a0,
     author = {M. A. Bubenchikov and A. M. Bubenchikov and S. Jambaa and A. V. Lun-Fu and A. S. Chelnokova},
     title = {Analytical solution of the {Schr\"odinger} integral equation},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--17},
     year = {2020},
     number = {67},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_67_a0/}
}
TY  - JOUR
AU  - M. A. Bubenchikov
AU  - A. M. Bubenchikov
AU  - S. Jambaa
AU  - A. V. Lun-Fu
AU  - A. S. Chelnokova
TI  - Analytical solution of the Schrödinger integral equation
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 5
EP  - 17
IS  - 67
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_67_a0/
LA  - ru
ID  - VTGU_2020_67_a0
ER  - 
%0 Journal Article
%A M. A. Bubenchikov
%A A. M. Bubenchikov
%A S. Jambaa
%A A. V. Lun-Fu
%A A. S. Chelnokova
%T Analytical solution of the Schrödinger integral equation
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 5-17
%N 67
%U http://geodesic.mathdoc.fr/item/VTGU_2020_67_a0/
%G ru
%F VTGU_2020_67_a0
M. A. Bubenchikov; A. M. Bubenchikov; S. Jambaa; A. V. Lun-Fu; A. S. Chelnokova. Analytical solution of the Schrödinger integral equation. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 67 (2020), pp. 5-17. http://geodesic.mathdoc.fr/item/VTGU_2020_67_a0/

[1] Berger C., Song Z., Li X., Wu X., Brown N., Naud C., Mayou D., Li T., Hass J., Marchenkov A. N., “Electronic confinement and coherence in patterned epitaxial graphene”, Science, 2006, no. 5777, 1191–1196 | DOI

[2] Sutter P. W., Flege J.-I., Sutter E. A., “Epitaxial graphene on ruthenium”, Nature Materials, 5:7 (2008), 406–411 | DOI

[3] Zhang Y., Gomez L., Ishikawa F. N., Madaria A., Ryu K., Wang C., Badmaev A., Zhou C., “Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapour deposition”, Journal of Physical Chemistry Letters, 1:20 (2010), 3101–3107 | DOI

[4] Yu J., Qin L., Hao Y., Kuang S., Bai X., Chong Y.-M., Zhang W., Wang E., “Vertically aligned boron nitride nanosheets: Chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity”, ACS Nano, 4:1 (2010), 414–422 | DOI

[5] Bianco E., Butler S., Jiang S., Restrepo O. D., Windl W., Goldberger J. E., “Stability and exfoliation of germanane: A germanium graphane analogue”, ACS Nano, 7:5 (2013), 4414–4421 | DOI

[6] Vogt P., De Padova P., Quaresima C., Avila J., Frantzeskakis E., Asensio M. C., Resta A., Ealet B., Le Lay G., “Silicene: Compelling experimental evidence for graphenelike twodimensional silicon”, Physical Review Letters, 108:15 (2012), 155501 | DOI

[7] Liu H., Du Y., Deng Y., Ye P.D., “Semiconducting black phosphorus: synthesis, transport properties and electronic applications”, Chemical Society Reviews, 44:9 (2015), 2732–2743 | DOI

[8] Zhu F., Chen W., Xu Y., Gao C., Guan D., Liu C., Qian D., Zhang S.-C., Jia J., “Epitaxial growth of two-dimensional stanene”, Nature Materials, 14:10 (2015), 1020–1025 | DOI

[9] Lin Y., Williams T. V., Connell J. W., “Soluble, exfoliated hexagonal boron nitride nanosheets”, Journal of Physical Chemistry Letters, 1:1 (2009), 277–283 | DOI

[10] Zhang J., Chen Y., Wang X., “Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications”, Energy and Environmental Science, 8:11 (2015), 3092–3108 | DOI

[11] Huang X., Zeng Z., Zhang H., “Metal dichalcogenide nanosheets: preparation, properties and applications”, Chemical Society Reviews, 42:5 (2013), 1934–1946 | DOI

[12] Lv R., Robinson J. A., Schaak R. E., Sun D., Sun Y., Mallouk T. E., Terrones M., “Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets”, Accounts of Chemical Research, 48:1 (2015), 56–64 | DOI

[13] Mahmood J., Lee E. K., Jung M., Shin D., Jeon I.-Y., Jung S.-M., Choi H.-J., Seo J.-M., Bae S.-Y., Sohn S.-D., Park N., Oh J.H., Shin H.-J., Baek J.-B., “Nitrogenated holey twodimensional structures”, Nature Communications, 6:1 (2015), 6486 | DOI

[14] Morse P.M., Feshbach H., Methods of Theoretical Physics, v. 1, McGraw-Hill, New York, 1953 | MR | Zbl

[15] Gradshteyn I.S., Ryzhik N.M., Table of Integrals, Series, and Products, Elsevier, 2007 | MR | MR | Zbl