Effect of relaxation processes on the shock wave focusing in a gas suspension cloud
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 66 (2020), pp. 121-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the interaction of a plane shock wave in air with a cylindrical region of a gas suspension and the effect of relaxation processes for various particle sizes on the refraction and focusing of the shock wave are studied. In the course of numerical modeling, the Euler approach is used to describe non-equilibrium motion of the gas and dispersed phases. A second order accuracy method in space and time is used. Verification of the method through test problems by comparing with exact solutions and calculations of other authors confirms a capability of detecting shock wave refraction effects and wave focusing with the appearance of peak profiles in a distribution of parameters. With an increase in particle sizes, the relaxation zones behind the shock wave and secondary waves, which propagate through a gas suspension cloud, have a significant impact on the shock wave refraction, focusing of transverse shock waves, and interface instability evolution. A focus point is shifted towards suspension cloud boundaries, while for sufficiently large particles, it moves beyond the boundaries (external focus mode). Thus, the reflection pressure of transverse waves and intensity of the instability at the interface reduce.
Keywords: shock wave, focusing, relaxation processes
Mots-clés : gas suspension.
@article{VTGU_2020_66_a9,
     author = {D. V. Sadin and B. V. Belyaev and V. A. Davidchuk},
     title = {Effect of relaxation processes on the shock wave focusing in a gas suspension cloud},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {121--131},
     year = {2020},
     number = {66},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_66_a9/}
}
TY  - JOUR
AU  - D. V. Sadin
AU  - B. V. Belyaev
AU  - V. A. Davidchuk
TI  - Effect of relaxation processes on the shock wave focusing in a gas suspension cloud
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 121
EP  - 131
IS  - 66
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_66_a9/
LA  - ru
ID  - VTGU_2020_66_a9
ER  - 
%0 Journal Article
%A D. V. Sadin
%A B. V. Belyaev
%A V. A. Davidchuk
%T Effect of relaxation processes on the shock wave focusing in a gas suspension cloud
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 121-131
%N 66
%U http://geodesic.mathdoc.fr/item/VTGU_2020_66_a9/
%G ru
%F VTGU_2020_66_a9
D. V. Sadin; B. V. Belyaev; V. A. Davidchuk. Effect of relaxation processes on the shock wave focusing in a gas suspension cloud. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 66 (2020), pp. 121-131. http://geodesic.mathdoc.fr/item/VTGU_2020_66_a9/

[1] A. M. Abd-El-Fattah, L. F. Henderson, “Shock waves at a fast-slow gas interface”, Journal of Fluid Mechanics, 86:1 (1978), 15–32 | DOI

[2] A. M. Abd-El-Fattah, L. F. Henderson, “Shock waves at a slow-fast gas interface”, Journal of Fluid Mechanics, 89:1 (1978), 79–95 | DOI

[3] J. H.J. Niederhaus, J. A. Greenough, J. G. Oakley, D. Ranjan, M. H. Anderson, R. A. Bonazza, “Computational parameter study for the three-dimensional shock-bubble interaction”, J. Fluid Mechanics, 594 (2008), 85–124 | DOI | Zbl

[4] J. F. Haas, B. Sturtevant, “Interaction of weak shock waves with cylindrical and spherical inhomogeneities”, Journal of Fluid Mechanics, 181 (1987), 41–76 | DOI

[5] M. Wang, T. Si, X. Luo, “Generation of polygonal gas interfaces by soap film for Richtmyer-Meshkov instability study”, Experiments in Fluids, 54 (2013), 1–9 | DOI

[6] M. Wang, T. Si, X. Luo, “Experimental study on the interaction of planar shock wave with polygonal helium cylinders”, Shock Waves, 25:4 (2015), 347–355 | DOI

[7] P. A. Voinovich, A. I. Zhmakin, A. A. Fursenko, “Numerical simulation of the interaction of shock waves in spatially inhomogeneous gases”, Soviet Physics: Technical Physics, 33 (1988), 748–753

[8] P. Yu. Georgievskiy, V. A. Levin, O. G. Sutyrin, “Spatial effects of interaction of a shock with a lateral low-density gas channel”, Technical Physics Letters, 44 (2018), 905–908 | DOI | DOI

[9] D. V. Sadin, “Behavior of the unsteady jet of a mixture of a pressurized gas and dispersed particles discharged from a circular duct into the atmosphere”, Journal of Applied Mechanics and Technical Physics, 40:1 (1999), 130–135 | DOI | Zbl

[10] D. V. Sadin, V. O. Guzenkov, S. D. Lyubarskii, “Numerical study of the structure of a finely disperse unsteady two-phase jet”, Journal of Applied Mechanics and Technical Physics, 46:2 (2005), 224–229 | DOI | Zbl

[11] D. V. Sadin, S. D. Lyubarskii, Yu. A. Gravchenko, “Features of an underexpanded pulsed impact gas-dispersed jet with a high particle concentration”, Technical Physics, 62:1 (2017), 18–23 | DOI | DOI

[12] V. P. Kiselev, S. P. Kiselev, V. M. Fomin, “Interaction of a shock wave with a cloud of particles of finite dimensions”, Journal of Applied Mechanics and Technical Physics, 35:2 (1994), 183–192 | DOI | MR | Zbl

[13] V. P. Kiselev, S. P. Kiselev, E. V. Vorozhtsov, “Interaction of a shock wave with a particle cloud of finite size”, Shock Waves, 16:1 (2006), 53–64 | DOI | MR | Zbl

[14] G. B. Jacobs, W. S. Don, T. Dittmann, “High-order resolution Eulerian-Lagrangian simulations of particle dispersion in the accelerated flow behind a moving shock”, Theoretical and Computational Fluid Dynamics, 2:1-4 (2012), 37–50 | DOI

[15] S. L. Davis, T. B. Dittmann, B. Jacobs G, W. S. Don, “Dispersion of a cloud of particles by a moving shock: Effects of the shape, angle of rotation, and aspect ratio”, Journal of Applied Mechanics and Technical Physics, 54:6 (2013), 900–912 | DOI

[16] P. Yu. Georgievskiy, V. A. Levin, O. G. Sutyrin, “Shock focusing upon interaction of a shock with a cylindrical dust cloud”, Technical Physics Letters, 42:9 (2016), 936–939 | DOI

[17] R. I. Nigmatulin, Dynamics of multiphase media, v. 1, 2, Nauka, M.

[18] D. V. Sadin, “TVD scheme for stiff problems of wave dynamics of heterogeneous media of nonhyperbolic nonconservative type”, Computational Mathematics and Mathematical Physics, 56:12 (2016), 2068–2078 | DOI | MR | Zbl

[19] D. V. Sadin, “Application of a scheme with customizable dissipative properties for a gas flow calculation with interface instability evolution”, Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki i optiki –Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 18:1 (2018), 153–157 | DOI | DOI

[20] R. B. Christensen, Godunov Methods on a Staggered Mesh An Improved Artificial Viscosity, Preprint. UCRL-JC-105269, Lawrence Livermore National Laboratory, Livermore, California, 1990, 11 pp.

[21] D. V. Sadin, “A modification of the large-particle method to the scheme having the second order of accuracy in space and time for shockwave flows in a gas suspension”, Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Matematicheskoe modelirovanie i programmirovanie–Bulletin of the South Ural State University. Mathematical Modelling, Programming Computer Software, 12:2 (2019), 112–122 | DOI | Zbl

[22] D. V. Sadin, “Stiffness problem in modeling wave flows of heterogeneous media with a three-temperature scheme of interphase heat and mass transfer”, Journal of Applied Mechanics and Technical Physics, 43:2 (2002), 286–290 | DOI | Zbl

[23] J. Niederhaus, A Computation parameter study for three-dimensional shock-bubble interactions, Ph.D. thesis, Madison, 2007, 283 pp.

[24] B. Wang, G. Xiang, X. Hu, “An incremental-stencil WENO reconstruction for simulation of compressible two-phase flows”, Int. J. Multiphase Flow, 104 (2018), 20–31 | DOI | MR