An electromagnetic method for frequency analysis of transverse vibrations of a beam
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 66 (2020), pp. 112-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Vibration-based diagnostics of constructions is an obligatory technical procedure in mechanical engineering. In this regard, there is a problem of an adequate theoretical description of vibration processes in various structures with account for end fixity conditions, as well as the creation of experimental facilities for non-contact testing. The paper presents a theoretical basis and experimental verification results for a method of electromagnetic frequency analysis of rod systems. The essence of the method is the experimental determination of natural oscillation frequencies and their comparison with reference values. The main attention is paid to a theoretical description of transverse vibrations of a cantilever conductive rod in an external magnetic field in order to determine reference frequencies of a defect-free sample. The presence of the external magnetic field gives rise to the distributed electromagnetic force exerted on the rod. In the case of natural oscillations, the magnetic force is damping, which leads to a change in damping factors of partial oscillations. The electromagnetic effect is selective towards vibrational modes; hence, the damping factors of various partial oscillations of the rod vary to different degrees. This fact allows one to determine an optimal location of the area with acting magnetic field, as well as its width when measuring a given frequency of sample testing. The proposed method has several advantages: indestructibility of the sample, non-contact measurements, invariability of mechanical properties of the sample during the tests.
Keywords: beam, magnetic field, vibrodiagnostics
Mots-clés : transverse oscillations, vibrations, internal friction.
@article{VTGU_2020_66_a8,
     author = {F. Yu. Kuznetsov},
     title = {An electromagnetic method for frequency analysis of transverse vibrations of a beam},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {112--120},
     year = {2020},
     number = {66},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_66_a8/}
}
TY  - JOUR
AU  - F. Yu. Kuznetsov
TI  - An electromagnetic method for frequency analysis of transverse vibrations of a beam
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 112
EP  - 120
IS  - 66
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_66_a8/
LA  - ru
ID  - VTGU_2020_66_a8
ER  - 
%0 Journal Article
%A F. Yu. Kuznetsov
%T An electromagnetic method for frequency analysis of transverse vibrations of a beam
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 112-120
%N 66
%U http://geodesic.mathdoc.fr/item/VTGU_2020_66_a8/
%G ru
%F VTGU_2020_66_a8
F. Yu. Kuznetsov. An electromagnetic method for frequency analysis of transverse vibrations of a beam. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 66 (2020), pp. 112-120. http://geodesic.mathdoc.fr/item/VTGU_2020_66_a8/

[1] V. V. Petrukhin, S. V. Petrukhin, Fundamentals of vibration-based diagnostics and vibration measuring instruments, a textbook, Infra-Inzheneriya, M., 2010

[2] A. K. Tomilin, G. A. Bayzakova, “Control over oscillation frequencies of resilient electromechanical systems”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika –Tomsk State University Journal of Mathematics and Mechanics, 2012, no. 3 (19), 87–92

[3] A. K. Tomilin, G. A. Bayzakova, “An electromagnetic method of vibrometer frequency adjusting”, Izvestiya vuzov. Fizika, 2012, no. 6/2, 244–247

[4] A. K. Tomilin, Oscillations of electromechanical systems with distributed parameters, Ust-Kamenogorsk, 2004

[5] A. K. Tomilin, N. F. Kurilskaya, “Vibrations of a conductive string in a nonstationary magnetic field under presence of two nonlinear factors”, J. Applied and Industrial Mathematics, 11:4 (2017), 600–604 | DOI | MR | Zbl

[6] I. M. Babakov, Theory of oscillations, Nauka, M., 1968

[7] M. A. Il'gamov, A. G. Khakimov, “Diagnosis of damage of a cantilever beam with a notch”, Russian Journal of Nondestructive Testing, 2009, no. 6, 430–435 | DOI

[8] M. A. Akhtyamov, A. R. Karimov, “Diagnosis of a crack location in a rod based on natural frequencies of longitudinal vibrations”, Elektronnyy zhurnal «Tekhnicheskaya akustika»–Electronic Journal Technical Acoustics, 2010, no. 3

[9] G. M.L. Gladwell, Inverse problems of the theory of oscillations, Institut komp'yuternykh issledovaniy, M.–Izhevsk, 2008, 608 pp.

[10] N. I. Lavrovich, “Natural frequencies of vibrations of rods”, Omskiy nauchnyy vestnik–Omsk Scientific Bulletin, 2000, 106–108