Of the variation of parameters of transfer processes for multicomponent hydrocarbon gas media under separation
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 66 (2020), pp. 86-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A detailed study of the evolution of local and integral parameters of momentum, heat, and mass transfer processes in hydrocarbon gas mixtures under separation conditions at given temperature and pressure values in working media is carried out within the framework of the principles of equilibrium thermodynamics using the Aspen HYSYS software package, namely, the Peng-Robinson equation of state for real gas mixtures, the principles of statistical mechanics, the approaches of corresponding states, the Chapman-Enskog and the Golubev methods, and the theory of similarity and dimensional analysis. The limits of similarity method applicability in quantitative estimates and qualitative forecasts of the mechanisms and configurations of convective heat and mass transfer in oil treatment units are established. The paper also discusses results of the analog method application in separation process modeling for momentum, heat and mass transfer processes in the problems of oil and gas industry. The conclusions about the aspects of property changes in complex mixtures and about heat and mass transfer intensity during separation, which violate a triple analogy in non-isothermal homogeneous and heterogeneous media, are recommended to take into account when designing real equipment.
Mots-clés : transfer coefficients, hydrocarbons
Keywords: multicomponent system, separation, modeling.
@article{VTGU_2020_66_a6,
     author = {A. V. Dmitriev and P. N. Zyatikov},
     title = {Of the variation of parameters of transfer processes for multicomponent hydrocarbon gas media under separation},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {86--95},
     year = {2020},
     number = {66},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_66_a6/}
}
TY  - JOUR
AU  - A. V. Dmitriev
AU  - P. N. Zyatikov
TI  - Of the variation of parameters of transfer processes for multicomponent hydrocarbon gas media under separation
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 86
EP  - 95
IS  - 66
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_66_a6/
LA  - ru
ID  - VTGU_2020_66_a6
ER  - 
%0 Journal Article
%A A. V. Dmitriev
%A P. N. Zyatikov
%T Of the variation of parameters of transfer processes for multicomponent hydrocarbon gas media under separation
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 86-95
%N 66
%U http://geodesic.mathdoc.fr/item/VTGU_2020_66_a6/
%G ru
%F VTGU_2020_66_a6
A. V. Dmitriev; P. N. Zyatikov. Of the variation of parameters of transfer processes for multicomponent hydrocarbon gas media under separation. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 66 (2020), pp. 86-95. http://geodesic.mathdoc.fr/item/VTGU_2020_66_a6/

[1] S. N. Kharlamov, V. Yu. Kim, S. I. Silvestrov, R. A. Alginov, S. A. Pavlov, “Prospects of RANS models with multiparameter effects at simulation of complex non-isothermal flows of viscous media in devices with any configuration of surface”, Proc. 6th International Forum on Strategic Technology, IFOST 2011 (Harbin, China, August 22-24, 2011), v. 2, 2011, 787–791 | DOI

[2] S. N. Kharlamov, S. I. Silvestrov, V. V. Zaykovskiy, E. V. Nikolaev, “On the problems of mathematical modeling of momentum, heat and mass transfer processes in viscous hydrocarbon media under conditions of complex motion and heat and mass transfer in pipelines”, Vestnik Rossiyskoy Akademii estestvennykh nauk. Zapadno-Sibirskoe otdelenie, 2017, no. 20, 67–89

[3] E. V. Nikolaev, S. N. Kharlamov, “Study of separation processes for multicomponent hydrocarbon systems in operating modes of oil preliminary treatment equipment”, Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov – Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering, 327:7 (2016), 84–89

[4] C. R. Wilke, “A Viscosity Equation for Gas Mixtures”, J. Chemical Physics, 18 (1950), 517–519 | DOI

[5] E. A. Mason, S. C. Saxena, “Approximate formula for the thermal conductivity of gas mixtures”, The Physics of Fluids, 1 (1958), 361–369 | DOI | MR

[6] V. V. Lunev, “New phenomenological model of multicomponent gas diffusion”, Fluid Dynamics, 52 (2017), 454–462 | DOI | MR | Zbl

[7] M. A. Nezovitina, Study of the dependency of mutual diffusion coefficients of hydrocarbon gases on pressure at various temperature values, Ph.D. thesis, Smolensk, 2011, 189 pp.

[8] P. Zangi, M. H. Rausch, A. P. Fröba, “Binary diffusion coefficients for gas mixtures of propane with methane and carbon dioxide measured in a Loschmidt cell combined with holographic interferometry”, Int. J. Thermophysics, 40 (2019), 17 pp. | DOI

[9] G. A. Tirskiy, “Determination of apparent diffusion coefficients in a laminar multicomponent boundary layer”, Doklady Akademii nauk, 155:6 (1964), 1278–1281

[10] C. R. Wilke, “Diffusional properties of multicomponent gases”, Chemical Engineering Progress, 46 (1950), 95–104 | DOI

[11] B. S. Petukhov, Heat exchange and resistance in a laminar fluid flow in tubes, Energiya, M., 1967

[12] B. P. Sharfarets, “Review of the theory of transport phenomenon and surface phenomena as applied to the solution of some problems in scientific instrument-making industry”, Nauchnoe priborostroenie, 25:3 (2015), 45–64

[13] HYSYS Simulation Basis, Aspen Technology, Inc., 2005, 527 pp.

[14] D. Y. Peng, D. B. Robinson, “A new two-constant equation of state”, Industrial Engineering Chemistry Fundamentals, 15 (1976), 59–64 | DOI | MR | Zbl

[15] E. V. Nikolaev, S. N. Kharlamov, “Features of the separation of multicomponent hydrocarbon media in operating modes of oil preparation apparatus”, Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov – Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering, 329:3 (2018), 69–76

[16] J. O. Hirshfelder, C. F. Curtis, R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley and Sons, New York, 1954, 1219 pp.

[17] N. B. Vargaftik, Handbook of thermal and physical properties of gases, Nauka, M., 1972

[18] P. Sh. Abiev, E. E. Bibik, E. A. Vlasov, B. S. Ermakov, New handbook of chemist and technologist. Electrode processes. Chemical kinetics and diffusion. Colloid chemistry, Professional, Saint Petersburg, 2004

[19] E. A. Lyubin, A. A. Korshak, “Dimensionless equations of mass transfer when operating with oils in vertical cylindrical tanks”, Neftegazovoe delo Oil and Gas Business, 2010, no. 2, 1–11

[20] M. Ali, Ch. Yan, Zh. Sun, H. Gu, J. Wang, M. Khurram, “Iodine removal effeciency in nonsubmerged and submerged self-primming venturi scrubber”, Nuclear Engineering and Technology, 45:2 (2013), 203–210 | DOI

[21] J. Chen, L. Yan, W. Song, D. Xu, “Effect of heat and mass transfer on the combustion stability in catalytic micro-combustors”, Applied Thermal Engineering, 131 (2018), 750–765 | DOI

[22] B. Carreon-Calderon, V. Uribe-Vargas, “Thermomechanical Point of View of the Effect of Pressure and Free Volume on the Molecular Diffusion Coefficients”, J. Chemical and Engineering Data, 64 (2019), 1956–1969 | DOI

[23] A. B. Daniel, S. A. Mohammad, M. A. Miranda, C. P. Aichele, “Absorption and desorption mass transfer rates as a function of pressure and mixing in a simple hydrocarbon system”, Chemical Engineering Research and Design, 144 (2019), 209–215 | DOI

[24] V. Ya. Rudyak, E. V. Lezhnev, D. N. Lyubimov, “Simulation modeling of transport coefficients for rarefied gases and nanogas suspensions”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2019, no. 59, 105–117 | DOI