Nonlinear waves and "negative heat capacity" in a medium with competitive sources
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 66 (2020), pp. 64-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a wave equation with sources, new running-wave type solutions are built. The results are expressed in terms of the heat transfer theory. We study two types of alternating volume energy sources $q_\upsilon$ with a nonlinear temperature dependence $T$. Let $q_\upsilon(T=T^1)=0$ where $T^1$ is the temperature of the source sign change. The source is positive at $T>T^1$ (heat input) and negative at $T (heat output) when is has technical origin. A source of biological origin differs from technical ones. It serves as a compensator: at $T>T^1$ it takes the heat in; at $T, it gives the heat out. Three types of analytical solutions are obtained: the sole wave, the kink structure, and the wave chain. Subsonic and supersonic wave processes are studied with respect to the rate of heat perturbations. The examples for a non-classical phenomenon of "negative heat capacity" are given when heat input/output leads to a temperature decrease/increase. We have considered a nonlinear medium liable to an exact analytical description of a wave problem with a having a resonance type of the temperature dependence: its oscillations have a crescent amplitude. As an example of physical interpretation for one solution, the rate of crystal growth is calculated as a function of the melt undercooling.
Keywords: wave equation, nonlinear energy source, temperature response of the medium, undercooled melt.
@article{VTGU_2020_66_a4,
     author = {O. N. Shablovskii},
     title = {Nonlinear waves and "negative heat capacity" in a medium with competitive sources},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {64--76},
     year = {2020},
     number = {66},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_66_a4/}
}
TY  - JOUR
AU  - O. N. Shablovskii
TI  - Nonlinear waves and "negative heat capacity" in a medium with competitive sources
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 64
EP  - 76
IS  - 66
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_66_a4/
LA  - ru
ID  - VTGU_2020_66_a4
ER  - 
%0 Journal Article
%A O. N. Shablovskii
%T Nonlinear waves and "negative heat capacity" in a medium with competitive sources
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 64-76
%N 66
%U http://geodesic.mathdoc.fr/item/VTGU_2020_66_a4/
%G ru
%F VTGU_2020_66_a4
O. N. Shablovskii. Nonlinear waves and "negative heat capacity" in a medium with competitive sources. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 66 (2020), pp. 64-76. http://geodesic.mathdoc.fr/item/VTGU_2020_66_a4/

[1] D. Jou, J. Casas-Vazquez, J. Lebon, Extended Irreversible Thermodynamics, Springer-Verlag, 2001, 486 pp. | MR | Zbl

[2] Yu. T. Glazunov, “Variation principle for the phenomena of interconnected heat and mass transfer with account of finite velocity of perturbation propagation”, Inzhenerno-Fizicheskiy Zhurnal – Engineering-Physical Journal, 40:1 (1981), 134–138 | MR

[3] N. I. Yavorskii, “Variational principle for a viscous heat-conducting liquid with relaxation”, Fluid Dynamics, 21:3 (1986), 338–345 | DOI | MR

[4] N. I. Nikitenko, “Problems of radiation theory of heat and mass transfer in solid and liquid media”, Inzhenerno-Fizicheskiy Zhurnal – Engineering-Physical Journal, 73:4 (2000), 851–859

[5] H. H. Pennes, “Analysis of tissue and arterial blood temperature in the resting human forearm”, J. Appl. Phisiol., 1:2 (1948), 93–122 | DOI

[6] L. Kh. Ingel', ““Negative heat capacity” in stratified fluids”, Physics-Uspekhi, 45:6 (2002), 637–644 | DOI | DOI

[7] O. N. Shablovskii, ““Negative heat capacity” in problems of nonlinear wave dynamics”, Fundamental'nye Fiziko-Matematicheskie Problemy i Modelirovanie Tekhniko-Tekhnologicheskikh System – Fundamental Physical and Mathematical Problems and Modeling of Technical and Technological Systems, 16, Janus-K, M., 2014, 78–89

[8] M. I. Yelshin, “To the oscillation problem of a linear second-order differential equation”, Doklady AN SSSR – Proceedings of the USSR Academy of Sciences, 18:3 (1938), 141–145

[9] A. D. Polyanin, V. F. Zaytsev, Handbook on nonlinear equations of mathematical physics: exact solutions, Fizmatlit, M., 2002

[10] O. N. Shablovskii, “Exact solutions of wave equations with nonlinear sources”, Fundamental'nye FizikoMatematicheskie Problemy i Modelirovanie Tekhniko-Tekhnologicheskikh System – Fundamental Physical and Mathematical Problems and Modeling of Technical and Technological Systems, 14, Janus-K, M., 2011, 382–391

[11] D. Herlach, P. Galenko, D. Holland-Moritz, Metastable solids from undercooled melts, Pergamon; Elsevier, 2007, 432 pp.