@article{VTGU_2020_66_a4,
author = {O. N. Shablovskii},
title = {Nonlinear waves and "negative heat capacity" in a medium with competitive sources},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {64--76},
year = {2020},
number = {66},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_66_a4/}
}
TY - JOUR AU - O. N. Shablovskii TI - Nonlinear waves and "negative heat capacity" in a medium with competitive sources JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2020 SP - 64 EP - 76 IS - 66 UR - http://geodesic.mathdoc.fr/item/VTGU_2020_66_a4/ LA - ru ID - VTGU_2020_66_a4 ER -
O. N. Shablovskii. Nonlinear waves and "negative heat capacity" in a medium with competitive sources. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 66 (2020), pp. 64-76. http://geodesic.mathdoc.fr/item/VTGU_2020_66_a4/
[1] D. Jou, J. Casas-Vazquez, J. Lebon, Extended Irreversible Thermodynamics, Springer-Verlag, 2001, 486 pp. | MR | Zbl
[2] Yu. T. Glazunov, “Variation principle for the phenomena of interconnected heat and mass transfer with account of finite velocity of perturbation propagation”, Inzhenerno-Fizicheskiy Zhurnal – Engineering-Physical Journal, 40:1 (1981), 134–138 | MR
[3] N. I. Yavorskii, “Variational principle for a viscous heat-conducting liquid with relaxation”, Fluid Dynamics, 21:3 (1986), 338–345 | DOI | MR
[4] N. I. Nikitenko, “Problems of radiation theory of heat and mass transfer in solid and liquid media”, Inzhenerno-Fizicheskiy Zhurnal – Engineering-Physical Journal, 73:4 (2000), 851–859
[5] H. H. Pennes, “Analysis of tissue and arterial blood temperature in the resting human forearm”, J. Appl. Phisiol., 1:2 (1948), 93–122 | DOI
[6] L. Kh. Ingel', ““Negative heat capacity” in stratified fluids”, Physics-Uspekhi, 45:6 (2002), 637–644 | DOI | DOI
[7] O. N. Shablovskii, ““Negative heat capacity” in problems of nonlinear wave dynamics”, Fundamental'nye Fiziko-Matematicheskie Problemy i Modelirovanie Tekhniko-Tekhnologicheskikh System – Fundamental Physical and Mathematical Problems and Modeling of Technical and Technological Systems, 16, Janus-K, M., 2014, 78–89
[8] M. I. Yelshin, “To the oscillation problem of a linear second-order differential equation”, Doklady AN SSSR – Proceedings of the USSR Academy of Sciences, 18:3 (1938), 141–145
[9] A. D. Polyanin, V. F. Zaytsev, Handbook on nonlinear equations of mathematical physics: exact solutions, Fizmatlit, M., 2002
[10] O. N. Shablovskii, “Exact solutions of wave equations with nonlinear sources”, Fundamental'nye FizikoMatematicheskie Problemy i Modelirovanie Tekhniko-Tekhnologicheskikh System – Fundamental Physical and Mathematical Problems and Modeling of Technical and Technological Systems, 14, Janus-K, M., 2011, 382–391
[11] D. Herlach, P. Galenko, D. Holland-Moritz, Metastable solids from undercooled melts, Pergamon; Elsevier, 2007, 432 pp.