Mesoscale meteorological model TSUNM3 for the study and forecast of meteorological parameters of the atmospheric surface layer over a major population center
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 66 (2020), pp. 35-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper describes the mathematical formulation and numerical method of the TSUNM3 high-resolution mesoscale meteorological model being developed at Tomsk State University. The model is nonhydrostatic and includes three-dimensional nonstationary equations of hydrothermodynamics of the atmospheric boundary layer with parameterization of turbulence, moisture microphysics, long-wave and short-wave (solar) radiation, and advective and latent heat flows in the atmosphere and at the boundary of its interaction with the underlying surface. The numerical algorithm is constructed using structured grids with uniform spacing in horizontal directions and condensing to the Earth surface in the vertical direction. When approximating the differential formulation of the problem, the finite volume method with the second order approximation in the spatial variables is used. Explicit-implicit approximations in time (Adams-Bashforth and Crank-Nicolson) are used to achieve second-order accuracy in time. The paper presents results of numerical forecasting of the main meteorological parameters of the atmosphere (temperature, humidity, wind speed and direction) and precipitation in different seasons in the Siberian region. The models were tested with the help of observations obtained using the Volna-4M sodar, MTR-5 temperature profile meter, and Meteo-2 ultrasonic weather stations of the Atmosfera Collective Use Center. The improved TSUNM3 model is shown to adequately reflect the precipitation time and intensity. However, in some cases, the times of its beginning and end do not always coincide, the difference can reach several hours. The precipitation phase state is reflected reliably. Over 70% of precipitation cases are confirmed by numerical calculations. The model satisfactorily predicts temperature and humidity characteristics. The quality of the precipitation forecast model is comparable to the modern mesoscale models, such as the Weather Research and Forecasting (WRF) model.
Keywords: mathematical modeling of atmospheric processes with high resolution, comparison of calculations with measurements of the Atmosfera Collective Use Center.
@article{VTGU_2020_66_a2,
     author = {A. V. Starchenko and A. A. Bart and L. I. Kizhner and E. A. Danilkin},
     title = {Mesoscale meteorological model {TSUNM3} for the study and forecast of meteorological parameters of the atmospheric surface layer over a major population center},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {35--55},
     year = {2020},
     number = {66},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_66_a2/}
}
TY  - JOUR
AU  - A. V. Starchenko
AU  - A. A. Bart
AU  - L. I. Kizhner
AU  - E. A. Danilkin
TI  - Mesoscale meteorological model TSUNM3 for the study and forecast of meteorological parameters of the atmospheric surface layer over a major population center
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 35
EP  - 55
IS  - 66
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_66_a2/
LA  - ru
ID  - VTGU_2020_66_a2
ER  - 
%0 Journal Article
%A A. V. Starchenko
%A A. A. Bart
%A L. I. Kizhner
%A E. A. Danilkin
%T Mesoscale meteorological model TSUNM3 for the study and forecast of meteorological parameters of the atmospheric surface layer over a major population center
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 35-55
%N 66
%U http://geodesic.mathdoc.fr/item/VTGU_2020_66_a2/
%G ru
%F VTGU_2020_66_a2
A. V. Starchenko; A. A. Bart; L. I. Kizhner; E. A. Danilkin. Mesoscale meteorological model TSUNM3 for the study and forecast of meteorological parameters of the atmospheric surface layer over a major population center. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 66 (2020), pp. 35-55. http://geodesic.mathdoc.fr/item/VTGU_2020_66_a2/

[1] R. Sokhi, A. Baklanov, H. Schlünzen et al, Mesoscale Modelling for Meteorological and Air Pollution Applications, Anthem Press, New York, 2018, 260 pp.

[2] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, D. M. Duda, W. Wang, J. G. Powers, A description of the advanced research WRF version 3, NCAR Tech. Note. NCAR/TN-68CSTR, 2008, 100 pp. | DOI | Zbl

[3] G. Yáñez-Morroni, J. Gironás, M. Delgado R. Caneo, R. Garreaud, “Using the Weather Research and Forecasting (WRF) model for precipitation forecasting in an andean region with complex topography”, Atmosphere, 9:8 (2018), 304 | DOI

[4] G. S. Rivin, R. M. Vil'fand, D. B. Kiktev, I. A. Rozinkina, K. O. Tudrii, D. V. Blinov, M. I. Varentsov, T. E. Samsonov, A. Yu. Bundel', A. A. Kirsanov, D. I. Zakharchenko, “The System for Numerical Prediction of Weather Events Including Severe Ones for the Moscow Megacity: The Prototype Development”, Meteorologiya i gidrologiya–Meteorology and hydrology, 2019, no. 11, 33–45

[5] A. V. Starchenko, A. A. Bart, N. N. Bogoslovsky, E. A. Danilkin, M. V. Terentyeva, “A mathematical modelling of atmospheric processes above an industrial center”, Proc. SPIE, 9292, 2014, 929249, 30 pp. | DOI

[6] R. Pielke, Mesoscale Meteorological Modeling, Academic Press, San Diego, California, 2002, 676 pp.

[7] S. Y. Hong, J. O.J. Lim, “The WRF single-moment 6-class microphysics scheme (WSM6)”, J. Korean Meteorological Society, 42:2 (2006), 129–151

[8] J. W. Bao, S. A. Michelson, E. D. Grell, “Pathways to the Production of Precipitating Hydrometeors and Tropical Cyclone Development”, Monthly Weather Review, 144 (2016), 2395–2420 | DOI

[9] A. Andren, “Evaluation of a turbulence closure scheme suitable for air pollution applications”, J. Applied Meteorology and Climatology, 29 (1990), 224–239 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[10] J. Smagorinsky, “General circulation experiments with the primitive equations: The basic experiment. I”, Monthly Weather Review, 91:2 (1963), 99–164 | 2.3.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[11] M. A. Tolstykh, G. S. Buldovsky, “An improved version of the global semi-Lagrangian model for forecasting meteorological fields in a version with a constant resolution up to 10 days in advance and results of its operational tests”, Fundamental'nyye i prikladnyye gidrometeorologicheskiye issledovaniya – Fundamental and Applied Hydrometeorological Studies, 2003, 24–47

[12] K. Carpenter, “Note on the paper Radiation condition for the lateral boundaries of limited-area numerical models by Miller, M. and Thorpe, A. (V. 107. pp. 615–628)”, J. Royal Meteorology Society, 108 (1982), 717–719 | DOI

[13] Monin A. S., Obukhov A. M., “Basic laws of turbulent mixing in the surface layer of the atmosphere”, Trudy Akademii Nauk SSSR Geofizika, 1954, no. 24, 163–187 | Zbl

[14] A. J. Dyer, B. B. Hicks, “Flux-gradient relationships in the constant flux layer”, Quart. J. Roy. Meteorol. Soc, 96 (1970), 715–721 | DOI

[15] J. Noilhan, J. F. Mahfouf, “The ISBA land surface parameterization scheme”, Global and Planetary Change, 13 (1996), 145–159 | DOI

[16] P. Hurley, The Air Pollution Model (TAPM) Version 2, Paper No 55, CSIRO Atmospheric Research, 2002, 49 pp. | DOI

[17] Y. Mahrer, R. A. Pielke, “A numerical study of the airflow over irregular terrain”, Beitr. Phys. Atmosph., 50 (1977), 98–113 | Zbl

[18] A. C. Dilley, D. M. OTBrien, “Estimating downward clear-sky long-wave irradiance at the surface from screen temperature and precipitable water”, Quart. J. Roy. Meteorol. Soc., 124 (1998), 1391–1401 | DOI

[19] G. Stephens, “Radiation profiles in extended water clouds. Part II: Parameterization schemes”, J. Atmospheric Sciences, 35 (1978), 2123–2132 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[20] Patankar S., Numerical heat transfer and fluid flow, CRC Press. Taylor Frances Group, 1980

[21] B. Van Leer, “Towards the ultimate conervative difference scheme. II. Monotonicity and conservation combined in a second order scheme”, J. Computational Physics, 14 (1974), 361–370 | DOI | MR | Zbl

[22] A. A. Semyonova, A. V. Starchenko, “The finite-difference scheme for the unsteady convection-diffusion equation based on weighted local cubic spline interpolation”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika –Tomsk State University Journal of Mathematics and Mechanics, 2017, no. 49, 61–74 | DOI

[23] A. Starchenko, E. Danilkin, A. Semenova, A. Bart, “Parallel algorithms for a 3D photochemical model of pollutant transport in the atmosphere”, Communications in Computer and Information Science, 687 (2016), 158–171 | DOI

[24] A. V. Starchenko, V. N. Berzun, Parallel Computing Methods, Tomsk State University, Tomsk, 2013

[25] A. V. Starchenko, A. A. Bart, L. I. Kizhner, S. L. Odintsov, E. V. Semyonov, “Numerical simulation of local atmospheric processes above a city”, Proceedings of SPIE, 11208, The International Society for Optical Engineering, 2019, 1–9 | DOI