@article{VTGU_2020_66_a2,
author = {A. V. Starchenko and A. A. Bart and L. I. Kizhner and E. A. Danilkin},
title = {Mesoscale meteorological model {TSUNM3} for the study and forecast of meteorological parameters of the atmospheric surface layer over a major population center},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {35--55},
year = {2020},
number = {66},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_66_a2/}
}
TY - JOUR AU - A. V. Starchenko AU - A. A. Bart AU - L. I. Kizhner AU - E. A. Danilkin TI - Mesoscale meteorological model TSUNM3 for the study and forecast of meteorological parameters of the atmospheric surface layer over a major population center JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2020 SP - 35 EP - 55 IS - 66 UR - http://geodesic.mathdoc.fr/item/VTGU_2020_66_a2/ LA - ru ID - VTGU_2020_66_a2 ER -
%0 Journal Article %A A. V. Starchenko %A A. A. Bart %A L. I. Kizhner %A E. A. Danilkin %T Mesoscale meteorological model TSUNM3 for the study and forecast of meteorological parameters of the atmospheric surface layer over a major population center %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2020 %P 35-55 %N 66 %U http://geodesic.mathdoc.fr/item/VTGU_2020_66_a2/ %G ru %F VTGU_2020_66_a2
A. V. Starchenko; A. A. Bart; L. I. Kizhner; E. A. Danilkin. Mesoscale meteorological model TSUNM3 for the study and forecast of meteorological parameters of the atmospheric surface layer over a major population center. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 66 (2020), pp. 35-55. http://geodesic.mathdoc.fr/item/VTGU_2020_66_a2/
[1] R. Sokhi, A. Baklanov, H. Schlünzen et al, Mesoscale Modelling for Meteorological and Air Pollution Applications, Anthem Press, New York, 2018, 260 pp.
[2] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, D. M. Duda, W. Wang, J. G. Powers, A description of the advanced research WRF version 3, NCAR Tech. Note. NCAR/TN-68CSTR, 2008, 100 pp. | DOI | Zbl
[3] G. Yáñez-Morroni, J. Gironás, M. Delgado R. Caneo, R. Garreaud, “Using the Weather Research and Forecasting (WRF) model for precipitation forecasting in an andean region with complex topography”, Atmosphere, 9:8 (2018), 304 | DOI
[4] G. S. Rivin, R. M. Vil'fand, D. B. Kiktev, I. A. Rozinkina, K. O. Tudrii, D. V. Blinov, M. I. Varentsov, T. E. Samsonov, A. Yu. Bundel', A. A. Kirsanov, D. I. Zakharchenko, “The System for Numerical Prediction of Weather Events Including Severe Ones for the Moscow Megacity: The Prototype Development”, Meteorologiya i gidrologiya–Meteorology and hydrology, 2019, no. 11, 33–45
[5] A. V. Starchenko, A. A. Bart, N. N. Bogoslovsky, E. A. Danilkin, M. V. Terentyeva, “A mathematical modelling of atmospheric processes above an industrial center”, Proc. SPIE, 9292, 2014, 929249, 30 pp. | DOI
[6] R. Pielke, Mesoscale Meteorological Modeling, Academic Press, San Diego, California, 2002, 676 pp.
[7] S. Y. Hong, J. O.J. Lim, “The WRF single-moment 6-class microphysics scheme (WSM6)”, J. Korean Meteorological Society, 42:2 (2006), 129–151
[8] J. W. Bao, S. A. Michelson, E. D. Grell, “Pathways to the Production of Precipitating Hydrometeors and Tropical Cyclone Development”, Monthly Weather Review, 144 (2016), 2395–2420 | DOI
[9] A. Andren, “Evaluation of a turbulence closure scheme suitable for air pollution applications”, J. Applied Meteorology and Climatology, 29 (1990), 224–239 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[10] J. Smagorinsky, “General circulation experiments with the primitive equations: The basic experiment. I”, Monthly Weather Review, 91:2 (1963), 99–164 | 2.3.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[11] M. A. Tolstykh, G. S. Buldovsky, “An improved version of the global semi-Lagrangian model for forecasting meteorological fields in a version with a constant resolution up to 10 days in advance and results of its operational tests”, Fundamental'nyye i prikladnyye gidrometeorologicheskiye issledovaniya – Fundamental and Applied Hydrometeorological Studies, 2003, 24–47
[12] K. Carpenter, “Note on the paper Radiation condition for the lateral boundaries of limited-area numerical models by Miller, M. and Thorpe, A. (V. 107. pp. 615–628)”, J. Royal Meteorology Society, 108 (1982), 717–719 | DOI
[13] Monin A. S., Obukhov A. M., “Basic laws of turbulent mixing in the surface layer of the atmosphere”, Trudy Akademii Nauk SSSR Geofizika, 1954, no. 24, 163–187 | Zbl
[14] A. J. Dyer, B. B. Hicks, “Flux-gradient relationships in the constant flux layer”, Quart. J. Roy. Meteorol. Soc, 96 (1970), 715–721 | DOI
[15] J. Noilhan, J. F. Mahfouf, “The ISBA land surface parameterization scheme”, Global and Planetary Change, 13 (1996), 145–159 | DOI
[16] P. Hurley, The Air Pollution Model (TAPM) Version 2, Paper No 55, CSIRO Atmospheric Research, 2002, 49 pp. | DOI
[17] Y. Mahrer, R. A. Pielke, “A numerical study of the airflow over irregular terrain”, Beitr. Phys. Atmosph., 50 (1977), 98–113 | Zbl
[18] A. C. Dilley, D. M. OTBrien, “Estimating downward clear-sky long-wave irradiance at the surface from screen temperature and precipitable water”, Quart. J. Roy. Meteorol. Soc., 124 (1998), 1391–1401 | DOI
[19] G. Stephens, “Radiation profiles in extended water clouds. Part II: Parameterization schemes”, J. Atmospheric Sciences, 35 (1978), 2123–2132 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[20] Patankar S., Numerical heat transfer and fluid flow, CRC Press. Taylor Frances Group, 1980
[21] B. Van Leer, “Towards the ultimate conervative difference scheme. II. Monotonicity and conservation combined in a second order scheme”, J. Computational Physics, 14 (1974), 361–370 | DOI | MR | Zbl
[22] A. A. Semyonova, A. V. Starchenko, “The finite-difference scheme for the unsteady convection-diffusion equation based on weighted local cubic spline interpolation”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika –Tomsk State University Journal of Mathematics and Mechanics, 2017, no. 49, 61–74 | DOI
[23] A. Starchenko, E. Danilkin, A. Semenova, A. Bart, “Parallel algorithms for a 3D photochemical model of pollutant transport in the atmosphere”, Communications in Computer and Information Science, 687 (2016), 158–171 | DOI
[24] A. V. Starchenko, V. N. Berzun, Parallel Computing Methods, Tomsk State University, Tomsk, 2013
[25] A. V. Starchenko, A. A. Bart, L. I. Kizhner, S. L. Odintsov, E. V. Semyonov, “Numerical simulation of local atmospheric processes above a city”, Proceedings of SPIE, 11208, The International Society for Optical Engineering, 2019, 1–9 | DOI