An iterative method for the Navier-Stokes equations in the problem of a viscous incompressible fluid flow around a thin plate
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 66 (2020), pp. 132-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the problem on a viscous fluid flow around a thin plate is considered using the exact Navier-Stokes equations. An iterative method is proposed for small velocity perturbations with respect to main flow velocities. At each iterative step, an integral equation is solved for a function of the viscous friction over the plate. The collocation method is used at each iteration step to reduce an integral equation to a system of linear algebraic equations, and the shooting method based on the classical fourth-order Runge-Kutta technique is applied. The solution obtained at each iteration step is compared with the Harrison-Filon solution at low Reynolds numbers, with the classical Blasius solution, and with the results computed using the direct numerical finite-volume method in the ANSYS CFX software for moderate and high Reynolds numbers. The proposed iterative method converges in a few steps. Its accuracy is rather high for small and large Reynolds number, while the error can reach 15% for moderate values.
Keywords: Navier-Stokes equations, iterative method, thin plate, integral equations.
Mots-clés : viscous fluid
@article{VTGU_2020_66_a10,
     author = {M. A. Sumbatyan and Ya. A. Berdnik and A. A. Bondarchuk},
     title = {An iterative method for the {Navier-Stokes} equations in the problem of a viscous incompressible fluid flow around a thin plate},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {132--142},
     year = {2020},
     number = {66},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_66_a10/}
}
TY  - JOUR
AU  - M. A. Sumbatyan
AU  - Ya. A. Berdnik
AU  - A. A. Bondarchuk
TI  - An iterative method for the Navier-Stokes equations in the problem of a viscous incompressible fluid flow around a thin plate
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 132
EP  - 142
IS  - 66
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_66_a10/
LA  - ru
ID  - VTGU_2020_66_a10
ER  - 
%0 Journal Article
%A M. A. Sumbatyan
%A Ya. A. Berdnik
%A A. A. Bondarchuk
%T An iterative method for the Navier-Stokes equations in the problem of a viscous incompressible fluid flow around a thin plate
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 132-142
%N 66
%U http://geodesic.mathdoc.fr/item/VTGU_2020_66_a10/
%G ru
%F VTGU_2020_66_a10
M. A. Sumbatyan; Ya. A. Berdnik; A. A. Bondarchuk. An iterative method for the Navier-Stokes equations in the problem of a viscous incompressible fluid flow around a thin plate. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 66 (2020), pp. 132-142. http://geodesic.mathdoc.fr/item/VTGU_2020_66_a10/

[1] H. Blasius, Boundary layers in fluids with little friction, National Advisory Committee for Aeronautics, Washington D.C., 1950, 57 pp.

[2] L. G. Loytsyanskiy, Fluid and gas mechanics, Nauka, M., 1973

[3] S. Goldstein, “Concerning some solutions of the boundary layer equations in hydrodynamics”, Mathematical Proceedings of the Cambridge Philosophical Society, 26 (1930), 1–30 | DOI | Zbl

[4] R. I. McLachlan, “The boundary layer on a finite flat plate”, Physics of Fluids A, 3:2 (1991), 341–348 | DOI | Zbl

[5] L. Kaiyuan, Y. Zhaohua, L. Qiaohong, “Some experiences of improving the speed of numerical Navier-Stokes solver using CUDA”, J. Algorithms and Computational Technology, 8 (2014), 287–300 | DOI | MR

[6] A. Brunschwig, C. Rondi, “Laminar flow across a flat plate”, J. Numerical Analysis for Engineering, 2001, 1–18

[7] X. F. Feng, Z. F. Tian, S. Q. Dai, “Numerical solution of the incompressible Navier-Stokes equations with exponential type schemes”, Int. J. Computer Mathematics, 82:9 (2006), 1167–1176 | DOI | MR

[8] L. Quartapelle, Numerical solution of the incompressible Navier-Stokes equations, Birkhäuser-Verlag, Basel, 2012, 292 pp. | MR

[9] H. Lamb, Hydrodynamics, C.U.P., 1932, 738 pp. | MR | Zbl

[10] V. M. Aleksandrov, E. V. Kovalenko, Problems of continuum mechanics with mixed boundary conditions, Nauka, M., 1986

[11] Ya. A. Berdnik, “An iterative method for the stationary Navier-Stokes equations in the problem on a flow around a linear plate”, Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Estestvennye nauki – Bulletin of Higher Education Institutes. North Caucasian Region. Natural Sciences, 2014, 30–34

[12] Sumbatyan M. A., Scalia A., Equations of mathematical diffraction theory, CRC Press, 2005, 291 pp. | MR

[13] M. Abramowitz, I. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover, N.Y., 1972, 1046 pp. | MR

[14] H. Bateman, A. Erdélyi, Tables of integral transforms, McGraw-Hill, N.Y., 1954, 451 pp. | MR

[15] Y. Berdnik, A. Beskopylny, “The approximation method in the problem on a flow of viscous fluid around a thin plate”, Aircraft Engineering and Aerospace Technology, 91:6 (2019), 807–813 | DOI

[16] H. Schlichting, Boundary-layer theory, Mc Graw-Hill, N.Y., 1955, 535 pp. | MR