Mots-clés : viscous fluid
@article{VTGU_2020_66_a10,
author = {M. A. Sumbatyan and Ya. A. Berdnik and A. A. Bondarchuk},
title = {An iterative method for the {Navier-Stokes} equations in the problem of a viscous incompressible fluid flow around a thin plate},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {132--142},
year = {2020},
number = {66},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_66_a10/}
}
TY - JOUR AU - M. A. Sumbatyan AU - Ya. A. Berdnik AU - A. A. Bondarchuk TI - An iterative method for the Navier-Stokes equations in the problem of a viscous incompressible fluid flow around a thin plate JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2020 SP - 132 EP - 142 IS - 66 UR - http://geodesic.mathdoc.fr/item/VTGU_2020_66_a10/ LA - ru ID - VTGU_2020_66_a10 ER -
%0 Journal Article %A M. A. Sumbatyan %A Ya. A. Berdnik %A A. A. Bondarchuk %T An iterative method for the Navier-Stokes equations in the problem of a viscous incompressible fluid flow around a thin plate %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2020 %P 132-142 %N 66 %U http://geodesic.mathdoc.fr/item/VTGU_2020_66_a10/ %G ru %F VTGU_2020_66_a10
M. A. Sumbatyan; Ya. A. Berdnik; A. A. Bondarchuk. An iterative method for the Navier-Stokes equations in the problem of a viscous incompressible fluid flow around a thin plate. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 66 (2020), pp. 132-142. http://geodesic.mathdoc.fr/item/VTGU_2020_66_a10/
[1] H. Blasius, Boundary layers in fluids with little friction, National Advisory Committee for Aeronautics, Washington D.C., 1950, 57 pp.
[2] L. G. Loytsyanskiy, Fluid and gas mechanics, Nauka, M., 1973
[3] S. Goldstein, “Concerning some solutions of the boundary layer equations in hydrodynamics”, Mathematical Proceedings of the Cambridge Philosophical Society, 26 (1930), 1–30 | DOI | Zbl
[4] R. I. McLachlan, “The boundary layer on a finite flat plate”, Physics of Fluids A, 3:2 (1991), 341–348 | DOI | Zbl
[5] L. Kaiyuan, Y. Zhaohua, L. Qiaohong, “Some experiences of improving the speed of numerical Navier-Stokes solver using CUDA”, J. Algorithms and Computational Technology, 8 (2014), 287–300 | DOI | MR
[6] A. Brunschwig, C. Rondi, “Laminar flow across a flat plate”, J. Numerical Analysis for Engineering, 2001, 1–18
[7] X. F. Feng, Z. F. Tian, S. Q. Dai, “Numerical solution of the incompressible Navier-Stokes equations with exponential type schemes”, Int. J. Computer Mathematics, 82:9 (2006), 1167–1176 | DOI | MR
[8] L. Quartapelle, Numerical solution of the incompressible Navier-Stokes equations, Birkhäuser-Verlag, Basel, 2012, 292 pp. | MR
[9] H. Lamb, Hydrodynamics, C.U.P., 1932, 738 pp. | MR | Zbl
[10] V. M. Aleksandrov, E. V. Kovalenko, Problems of continuum mechanics with mixed boundary conditions, Nauka, M., 1986
[11] Ya. A. Berdnik, “An iterative method for the stationary Navier-Stokes equations in the problem on a flow around a linear plate”, Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Estestvennye nauki – Bulletin of Higher Education Institutes. North Caucasian Region. Natural Sciences, 2014, 30–34
[12] Sumbatyan M. A., Scalia A., Equations of mathematical diffraction theory, CRC Press, 2005, 291 pp. | MR
[13] M. Abramowitz, I. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover, N.Y., 1972, 1046 pp. | MR
[14] H. Bateman, A. Erdélyi, Tables of integral transforms, McGraw-Hill, N.Y., 1954, 451 pp. | MR
[15] Y. Berdnik, A. Beskopylny, “The approximation method in the problem on a flow of viscous fluid around a thin plate”, Aircraft Engineering and Aerospace Technology, 91:6 (2019), 807–813 | DOI
[16] H. Schlichting, Boundary-layer theory, Mc Graw-Hill, N.Y., 1955, 535 pp. | MR