Mots-clés : reconstruction
@article{VTGU_2020_66_a1,
author = {Sh. Azhgaliev and Sh. Abikenova},
title = {On the lower bound in the problem of approximate reconstruction of functions by values of the {Radon} transform},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {24--34},
year = {2020},
number = {66},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_66_a1/}
}
TY - JOUR AU - Sh. Azhgaliev AU - Sh. Abikenova TI - On the lower bound in the problem of approximate reconstruction of functions by values of the Radon transform JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2020 SP - 24 EP - 34 IS - 66 UR - http://geodesic.mathdoc.fr/item/VTGU_2020_66_a1/ LA - ru ID - VTGU_2020_66_a1 ER -
%0 Journal Article %A Sh. Azhgaliev %A Sh. Abikenova %T On the lower bound in the problem of approximate reconstruction of functions by values of the Radon transform %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2020 %P 24-34 %N 66 %U http://geodesic.mathdoc.fr/item/VTGU_2020_66_a1/ %G ru %F VTGU_2020_66_a1
Sh. Azhgaliev; Sh. Abikenova. On the lower bound in the problem of approximate reconstruction of functions by values of the Radon transform. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 66 (2020), pp. 24-34. http://geodesic.mathdoc.fr/item/VTGU_2020_66_a1/
[1] N. Temirgaliyev, “Number-theoretical methods and probability-theoretical approach to problems of analysis. Theory of immersions and approximations, absolute convergence, and transformations of Fourier series”, Vestnik Evraziyskogo universiteta im. L.N. Gumileva–Eurasian Mathematical Journal, 1997, no. 3, 90–144
[2] N. Temirgaliyev, “On the problem of recovery by inexact information”, Vestnik Evraziyskogo universiteta im. L.N. Gumileva–Eurasian Mathematical Journal, 2004, no. 1, 202–209
[3] N. Temirgaliyev, Matematika: Izbrannoye. Nauka, Gumilev Eurasian National University, Astana, 2009
[4] N. Temirgaliyev, “Computer (numerical) diameter. Algebraic theory of numbers and harmonic analysis in problems of recovery (quasi-Monte Carlo method). Theory of immersions and approximations. Fourier series”, Vestnik Evraziyskogo universiteta im. L.N. Gumileva–Eurasian Mathematical Journal, 2010, Special issue, 1–194
[5] N. Temirgaliyev, Continuous and discrete mathematics in the harmonious integrity in the context of investigation directions, Institute of Theoretical Mathematics and Scientific Computations, Astana, 2012
[6] N. Zhubanysheva A. Zh. Temirgaliyev, “Theory of approximations, computational mathematics, and numerical analysis in a new conception in the light of computer (computational) diameter”, Vestnik Evraziyskogo universiteta im. L.N. Gumileva–Eurasian Mathematical Journal, 124:3 (2018), 8–88
[7] N. Temirgaliyev, A. Zh. Zhubanysheva, “Computational (Numerical) diameter in a context of general theory of a recovery”, Russian Mathematics, 63:1 (2019), 79–86 | DOI | MR | Zbl
[8] N. Temirgaliyev, A. Zh. Zhubanysheva, “Order estimates of the norms of derivatives of functions with zero values on linear functionals and their applications”, Russian Mathematics, 61:3 (2017), 77–82 | DOI | MR | Zbl
[9] Sh. U. Azhgaliyev, N. Temirgaliyev, “Informativeness of all the linear functionals in the recovery of functions in the classes $H_p^\omega$”, Sbornik: Mathematics, 198:11 (2007), 1535–1551 | DOI | MR | MR | Zbl
[10] Sh. U. Azhgaliyev, N. Temirgaliyev, “Informativeness of linear functionals”, Mathematical Notes, 73:6 (2003), 759–768 | DOI | MR | MR | Zbl
[11] N. M. Korobov, Trigonometric sums and their applications, Nauka, M., 1989 | MR
[12] K. K. Frolov, “Upper error bounds for quadrature formulas on function classes”, Soviet Mathematics Doklady, 17 (1976), 1665–1669 | MR | Zbl
[13] S. A. Smolyak, “Quadrature and Interpolation Formulas for Tensor Products of Certain Classes of Functions”, Soviet Mathematics Doklady, 4 (1963), 240–243 | Zbl
[14] K. Sherniyazov, Approximate reconstruction of functions and solutions of the thermal conductivity equation with initial temperature distribution functions from classes E, SW, and B, Dissertation, Al-Farabi Kazakh National University, 1998
[15] S. R. Deans, The Radon Transform and some of its Applications, Wiley, 1983 | DOI | MR | Zbl
[16] F. Naterrer, The Mathematics of Computerized Tomography, Classics in Applied Mathematics, 32, SIAM, 2001 | MR
[17] F. Natterer, “The Identification Problem in Emission Computed Tomography”, Mathematical Aspects of Computerized Tomography, Proceedings (Oberwolfach, February 10–16, 1980), Springer, 1980, 45–56
[18] S. Helgason, The Radon Transform, Birkhäuser, 1980 | MR | MR | Zbl
[19] G. T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction from Projection, 2nd ed., Springer, 2009, 85 pp. | MR
[20] F. Naterrer, “A Sobolev Space Analysis of Picture Reconstruction”, SIAM J. Applied Mathematics, 39:3 (1980), 402–411 | DOI | MR
[21] R. Marr, “On the reconstruction of a function on a circular domain from a sampling of its line integrals”, J. Math. Anal. Appl., 45:2 (1974), 357–374 | DOI | MR | Zbl
[22] B. Logan, L. Shepp, “Optimal reconstruction of a function from its projections”, Duke Math. J., 42:4 (1975), 645–659 | DOI | MR | Zbl
[23] I. Georgieva, C. Hofreither, C. Koutschan, V. Pillwein, T. Thanatipanonda, “Harmonic interpolation based on Radon projections along the sides of regular polygons”, Cent. Eur. J. Math., 11:4 (2013), 609–620 | DOI | MR | Zbl
[24] K. I. Oskolkov, “Ridge approximation, Chebyshev-Fourier analysis and optimal quadrature formulas”, Proceedings of the Steklov Institute of Mathematics, 219 (1997), 265–280 | MR | Zbl
[25] V. E. Maiorov, “On best approximation by ridge functions”, J. Approximation Theory, 99:1 (1999), 68–94 | DOI | MR | Zbl
[26] V. E. Maiorov, K. I. Oskolkov, V. N. Temlyakov, “Gridge approximation and Radon compass”, Approximation Theory: A volume dedicated to B. Sendov, ed. B. Bojanov, DARBA, Sofia, 2002, 284–309 | DOI | MR | Zbl
[27] V. N. Konovalov, D. Leviatan, V. E. Maiorov, “Approximation of Sobolev classes by polynomials and ridge functions”, J. Approximation Theory, 159 (2009), 97–108 | DOI | MR | Zbl
[28] V. N. Temlyakov, “On approximate recovery of functions with bounded mixed derivative”, J. Complexity, 1993, no. 9, 41–59 | DOI | MR | Zbl
[29] S. A. Smolyak, On the optimal recovery of functions and functionals of them, Dissertation, Post office box 2325, M., 1965
[30] S. N. Kudryavtsev, “The best accuracy of reconstruction of finitely smooth functions from their values at a given number of points”, Izvestiya: Mathematics, 62:1 (1998), 19–53 | DOI | MR | Zbl