On the lower bound in the problem of approximate reconstruction of functions by values of the Radon transform
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 66 (2020), pp. 24-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study the problem of function reconstruction by values of Radon transforms within the framework of the Computational (Numerical) Diameter (C(N)D) approach. The meaning of C(N)D is to solve two independent problems: obtaining lower bounds of the reconstruction error by exact information and specifying the computing tool that implements the upper bounds (preferably coinciding with the lower bound up to constants). The C(N)D approach is a mathematical model of experiments for describing various processes (physical, chemical, technical, etc.). An important role in setting up such experiments is played by types of measuring instruments, which is reflected in C(N)D as types of functionals. The next important point is the choice of location and balancing of instruments, i.e. selection of functionals’ parameters. The final step is to build an optimal computing tool using the obtained data. The most studied types of functionals are function values at points and Fourier coefficients. An important difference of this work from previously obtained results is the study of the approximation capabilities of another type of functionals — Radon transforms, i.e. mathematical model of the use of tomography and similar technologies. This paper is devoted to obtaining lower bounds for the error in reconstructing functions from Sobolev and Korobov spaces.
Keywords: function, Radon transforms, Sobolev class, Korobov class, lower bounds.
Mots-clés : reconstruction
@article{VTGU_2020_66_a1,
     author = {Sh. Azhgaliev and Sh. Abikenova},
     title = {On the lower bound in the problem of approximate reconstruction of functions by values of the {Radon} transform},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {24--34},
     year = {2020},
     number = {66},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_66_a1/}
}
TY  - JOUR
AU  - Sh. Azhgaliev
AU  - Sh. Abikenova
TI  - On the lower bound in the problem of approximate reconstruction of functions by values of the Radon transform
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 24
EP  - 34
IS  - 66
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_66_a1/
LA  - ru
ID  - VTGU_2020_66_a1
ER  - 
%0 Journal Article
%A Sh. Azhgaliev
%A Sh. Abikenova
%T On the lower bound in the problem of approximate reconstruction of functions by values of the Radon transform
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 24-34
%N 66
%U http://geodesic.mathdoc.fr/item/VTGU_2020_66_a1/
%G ru
%F VTGU_2020_66_a1
Sh. Azhgaliev; Sh. Abikenova. On the lower bound in the problem of approximate reconstruction of functions by values of the Radon transform. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 66 (2020), pp. 24-34. http://geodesic.mathdoc.fr/item/VTGU_2020_66_a1/

[1] N. Temirgaliyev, “Number-theoretical methods and probability-theoretical approach to problems of analysis. Theory of immersions and approximations, absolute convergence, and transformations of Fourier series”, Vestnik Evraziyskogo universiteta im. L.N. Gumileva–Eurasian Mathematical Journal, 1997, no. 3, 90–144

[2] N. Temirgaliyev, “On the problem of recovery by inexact information”, Vestnik Evraziyskogo universiteta im. L.N. Gumileva–Eurasian Mathematical Journal, 2004, no. 1, 202–209

[3] N. Temirgaliyev, Matematika: Izbrannoye. Nauka, Gumilev Eurasian National University, Astana, 2009

[4] N. Temirgaliyev, “Computer (numerical) diameter. Algebraic theory of numbers and harmonic analysis in problems of recovery (quasi-Monte Carlo method). Theory of immersions and approximations. Fourier series”, Vestnik Evraziyskogo universiteta im. L.N. Gumileva–Eurasian Mathematical Journal, 2010, Special issue, 1–194

[5] N. Temirgaliyev, Continuous and discrete mathematics in the harmonious integrity in the context of investigation directions, Institute of Theoretical Mathematics and Scientific Computations, Astana, 2012

[6] N. Zhubanysheva A. Zh. Temirgaliyev, “Theory of approximations, computational mathematics, and numerical analysis in a new conception in the light of computer (computational) diameter”, Vestnik Evraziyskogo universiteta im. L.N. Gumileva–Eurasian Mathematical Journal, 124:3 (2018), 8–88

[7] N. Temirgaliyev, A. Zh. Zhubanysheva, “Computational (Numerical) diameter in a context of general theory of a recovery”, Russian Mathematics, 63:1 (2019), 79–86 | DOI | MR | Zbl

[8] N. Temirgaliyev, A. Zh. Zhubanysheva, “Order estimates of the norms of derivatives of functions with zero values on linear functionals and their applications”, Russian Mathematics, 61:3 (2017), 77–82 | DOI | MR | Zbl

[9] Sh. U. Azhgaliyev, N. Temirgaliyev, “Informativeness of all the linear functionals in the recovery of functions in the classes $H_p^\omega$”, Sbornik: Mathematics, 198:11 (2007), 1535–1551 | DOI | MR | MR | Zbl

[10] Sh. U. Azhgaliyev, N. Temirgaliyev, “Informativeness of linear functionals”, Mathematical Notes, 73:6 (2003), 759–768 | DOI | MR | MR | Zbl

[11] N. M. Korobov, Trigonometric sums and their applications, Nauka, M., 1989 | MR

[12] K. K. Frolov, “Upper error bounds for quadrature formulas on function classes”, Soviet Mathematics Doklady, 17 (1976), 1665–1669 | MR | Zbl

[13] S. A. Smolyak, “Quadrature and Interpolation Formulas for Tensor Products of Certain Classes of Functions”, Soviet Mathematics Doklady, 4 (1963), 240–243 | Zbl

[14] K. Sherniyazov, Approximate reconstruction of functions and solutions of the thermal conductivity equation with initial temperature distribution functions from classes E, SW, and B, Dissertation, Al-Farabi Kazakh National University, 1998

[15] S. R. Deans, The Radon Transform and some of its Applications, Wiley, 1983 | DOI | MR | Zbl

[16] F. Naterrer, The Mathematics of Computerized Tomography, Classics in Applied Mathematics, 32, SIAM, 2001 | MR

[17] F. Natterer, “The Identification Problem in Emission Computed Tomography”, Mathematical Aspects of Computerized Tomography, Proceedings (Oberwolfach, February 10–16, 1980), Springer, 1980, 45–56

[18] S. Helgason, The Radon Transform, Birkhäuser, 1980 | MR | MR | Zbl

[19] G. T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction from Projection, 2nd ed., Springer, 2009, 85 pp. | MR

[20] F. Naterrer, “A Sobolev Space Analysis of Picture Reconstruction”, SIAM J. Applied Mathematics, 39:3 (1980), 402–411 | DOI | MR

[21] R. Marr, “On the reconstruction of a function on a circular domain from a sampling of its line integrals”, J. Math. Anal. Appl., 45:2 (1974), 357–374 | DOI | MR | Zbl

[22] B. Logan, L. Shepp, “Optimal reconstruction of a function from its projections”, Duke Math. J., 42:4 (1975), 645–659 | DOI | MR | Zbl

[23] I. Georgieva, C. Hofreither, C. Koutschan, V. Pillwein, T. Thanatipanonda, “Harmonic interpolation based on Radon projections along the sides of regular polygons”, Cent. Eur. J. Math., 11:4 (2013), 609–620 | DOI | MR | Zbl

[24] K. I. Oskolkov, “Ridge approximation, Chebyshev-Fourier analysis and optimal quadrature formulas”, Proceedings of the Steklov Institute of Mathematics, 219 (1997), 265–280 | MR | Zbl

[25] V. E. Maiorov, “On best approximation by ridge functions”, J. Approximation Theory, 99:1 (1999), 68–94 | DOI | MR | Zbl

[26] V. E. Maiorov, K. I. Oskolkov, V. N. Temlyakov, “Gridge approximation and Radon compass”, Approximation Theory: A volume dedicated to B. Sendov, ed. B. Bojanov, DARBA, Sofia, 2002, 284–309 | DOI | MR | Zbl

[27] V. N. Konovalov, D. Leviatan, V. E. Maiorov, “Approximation of Sobolev classes by polynomials and ridge functions”, J. Approximation Theory, 159 (2009), 97–108 | DOI | MR | Zbl

[28] V. N. Temlyakov, “On approximate recovery of functions with bounded mixed derivative”, J. Complexity, 1993, no. 9, 41–59 | DOI | MR | Zbl

[29] S. A. Smolyak, On the optimal recovery of functions and functionals of them, Dissertation, Post office box 2325, M., 1965

[30] S. N. Kudryavtsev, “The best accuracy of reconstruction of finitely smooth functions from their values at a given number of points”, Izvestiya: Mathematics, 62:1 (1998), 19–53 | DOI | MR | Zbl