@article{VTGU_2020_65_a9,
author = {N. V. Skripnyak and K. V. Iokhim},
title = {Effect of grain size distribution on the strength and strain properties of {Zr-Nb} alloys under tension at high strain rates},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {124--136},
year = {2020},
number = {65},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_65_a9/}
}
TY - JOUR AU - N. V. Skripnyak AU - K. V. Iokhim TI - Effect of grain size distribution on the strength and strain properties of Zr-Nb alloys under tension at high strain rates JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2020 SP - 124 EP - 136 IS - 65 UR - http://geodesic.mathdoc.fr/item/VTGU_2020_65_a9/ LA - ru ID - VTGU_2020_65_a9 ER -
%0 Journal Article %A N. V. Skripnyak %A K. V. Iokhim %T Effect of grain size distribution on the strength and strain properties of Zr-Nb alloys under tension at high strain rates %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2020 %P 124-136 %N 65 %U http://geodesic.mathdoc.fr/item/VTGU_2020_65_a9/ %G ru %F VTGU_2020_65_a9
N. V. Skripnyak; K. V. Iokhim. Effect of grain size distribution on the strength and strain properties of Zr-Nb alloys under tension at high strain rates. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 65 (2020), pp. 124-136. http://geodesic.mathdoc.fr/item/VTGU_2020_65_a9/
[1] D. Guo, Z. Zhang, G. Zhang, M. Li, Y. Shi, T. Ma, X. Zhang, “An extraordinary enhancement of strain hardening in fine-grained zirconium”, Materials Science and Engineering: A, 591 (2014), 167–172 | DOI
[2] C. A. Vazquez, A. M. Fortis, “Mechanical Tests and Microstructural Characterization of Hydrided Zr-1 wt% Nb”, Procedia Materials Science, 1 (2012), 520–527 | DOI
[3] H. G. Kim, S. Y. Park, M. H. Lee, Y. H. Jeong, S. D. Kim, “Corrosion and microstructural characteristics of Zr-Nb alloys with different Nb contents”, Journal of Nuclear Materials, 373:1–3 (2008), 429–432 | DOI
[4] Y. P. Sharkeev, V. P. Vavilov, V. A. Skripnyak, E. V. Legostaeva, A. Y. Eroshenko, O. A. Belyavskaya, A. M. Ustinov, A. A. Klopotov, A. O. Chulkov, A. A. Kozulin, V. V. Skrypnyak, A. Yu. Zhilyakov, V. P. Kouznetsov, M. V. Kuimova, “Research on the processes of deformation and failure in coarse- and ultrafine-grain states of Zr-1Nb alloys by digital image correlation and infrared thermography”, Materials Science and Engineering: A, 784 (2020), 139203 | DOI
[5] Y. Chen, J. Hjelen, H. J. Roven, “Application of EBSD technique to ultrafine grained and nanostructured materials processed by severe plastic deformation: Sample preparation, parameters optimization and analysis”, Transactions of Nonferrous Metals Society of China, 22:8 (2012), 1801–1809 | DOI
[6] A. N. Behera, A. Chaudhuri, R. Kapoor, J. K. Chakravartty, S. Suwas, “High temperature deformation behavior of Nb-1 wt. % Zr alloy”, Materials and Design, 92 (2016), 750–759 | DOI
[7] B. Raeisinia, C. W. Sinclair, W. J. Poole, C. N. Tome, “On the impact of grain size distribution on the plastic behaviour of polycrystalline metals”, Materials Science and Engineering: A, 16 (2008), 025001 | DOI
[8] K. Kumar, J. A. Szpunar, “EBSD studies on microstructure and crystallographic orientation ofhydrides in Zircaloy-4, Zr-1% Nb and Zr-2.5% Nb”, Materials Science and Engineering: A, 528:21 (2011), 6366–6374 | DOI
[9] H. Yang, S. Kano, J. Shen, J. McGrady, Z. Zhao, Z. Duan, H. Abe, “On the strength-hardness relationships in a Zr-Nb alloy plate with bimodal basal texture microstructure”, Materials Science and Engineering: A, 732 (2018), 333–340 | DOI
[10] Y. M. Wang, M. W. Chen, F.H. Zhou, E. Ma, “High tensile ductility in a nanostructured metal”, Nature, 419 (2002), 912–5 | DOI
[11] H. L. Yang, Y. Matsukawa, S. Kano, Z. G. Duan, K. Murakami, H. Abe, “Investigation on microstructural evolution and hardening mechanism in dilute Zr-Nb binary alloys”, Journal of Nuclear Materials, 481 (2016), 117–124 | DOI
[12] R. Kapoor, A. Sarkar, J. Singh, I. Samajdar, D. Raabe, “Effect of strain rate on twinning in a Zr alloy”, Scripta Materialia, 74 (2014), 72–75 | DOI
[13] M. P. Puls, “Properties of Bulk Zirconium Hydrides”, Engineering Materials, 2012, 7–52 | DOI
[14] V. A. Skripnyak, V. V. Skripnyak, E. G. Skripnyak, N. V. Skripnyak, “Modelling of the mechanical response of Zr-Nb and Ti-Nb alloys in a wide temperature range”, International Journal of Mechanics and Materials in Design, 2019 | DOI
[15] V. A. Skripnyak, N. V. Skripnyak, E. G. Skripnyak, V. V. Skripnyak, “Influence of grain size distribution on the mechanical behavior of light alloys in wide range of strain rates”, Proceedings of the 7th International Conference on Mechanics and Materials in Design (Albufeira/Portugal 11-15 June 2017), 2017 | DOI
[16] K. L. Neilsen, V. Tvergaard, “Ductile shear failure or plug failure of spot welds modelled by modified Gurson model”, Eng. Fract. Mech., 77 (2010), 1031–1047 | DOI
[17] V. Tvergaard, “Study of localization in a void-sheet under stress states near pure shear”, Int. J. Solids Struct., 75–76 (2015), 134–142 | DOI
[18] A. C. Souza, J. L. Rossi, P. Tsakiropoulos, L. G. Martinez, C. R. Grandini, F. C. Ceoni, C. S. Mucsi, H. P.S. Correa, “Preparation and Melting of Zr-1.0Nb Alloy”, Materials Science Forum, 869 (2016), 578–584 | DOI
[19] A. Harte, M. Griffiths, M. Preuss, “The characterisation of second phases in the Zr-Nb and ZrNb-Sn-Fe alloys: A critical review”, Journal of Nuclear Materials, 505 (2018), 227–239 | DOI
[20] P. Verleysen, J. Peirs, “Quasi-static and high strain rate fracture behaviour of Ti6Al4V”, Int. J. Impact Eng., 108 (2017), 370–388 | DOI
[21] H. J. Frost, M. F. Ashby, Deformation-Mechanism Maps, Pergamon Press, Oxford, UK, 1982
[22] Y. Shi, M. Li, D. Guo, T. Ma, Z. Zhang, G. Zhang, X. Zhang, “Tailoring grain size distribution for optimizing strength and ductility of multi-modal Zr”, Materials Letters, 108 (2013), 228–230 | DOI