Mots-clés : longitudinal oscillations
@article{VTGU_2020_65_a6,
author = {M. A. Kalmova and O. V. Ratmanova},
title = {Analysis of interaction between solids of revolution and a beam corresponding to the {Kelvin} model},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {92--97},
year = {2020},
number = {65},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_65_a6/}
}
TY - JOUR AU - M. A. Kalmova AU - O. V. Ratmanova TI - Analysis of interaction between solids of revolution and a beam corresponding to the Kelvin model JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2020 SP - 92 EP - 97 IS - 65 UR - http://geodesic.mathdoc.fr/item/VTGU_2020_65_a6/ LA - ru ID - VTGU_2020_65_a6 ER -
%0 Journal Article %A M. A. Kalmova %A O. V. Ratmanova %T Analysis of interaction between solids of revolution and a beam corresponding to the Kelvin model %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2020 %P 92-97 %N 65 %U http://geodesic.mathdoc.fr/item/VTGU_2020_65_a6/ %G ru %F VTGU_2020_65_a6
M. A. Kalmova; O. V. Ratmanova. Analysis of interaction between solids of revolution and a beam corresponding to the Kelvin model. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 65 (2020), pp. 92-97. http://geodesic.mathdoc.fr/item/VTGU_2020_65_a6/
[1] A. Yu. Ishlinskiy, “Longitudinal vibrations of a rod in the presence of the linear law of consequences and relaxation”, Prikladnaya matematika i mekhanika – Journal of Applied Mathematics and Mechanics, 4:1 (1940), 18–21
[2] F. B. Badalov, Dynamic dampers of vibrations of hereditary-deformable systems, TashGAI, Tashkent, 2003, 81 pp.
[3] Yu. I. Neymark, N. A. Fufaev, Dynamics of nonholonomic systems, Nauka, M., 1967
[4] V. G. Wilke, Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1997, no. 1, 48–55 | MR | Zbl
[5] Yu. A. Chirkunov, “Non-linear longitudinal oscillations of a viscoelastic rod in Kelvin's model”, Journal of Applied Mathematics and Mechanics, 79:5 (2015), 506–513 | DOI | MR | Zbl
[6] A. R. Miftakhova, “Contact Problems for Rolling with Slip for Viscoelastic Solids”, Journal of Friction and Wear, 39:1 (2018), 55–61 | DOI
[7] V. Bogomolov, I. Raznitsyn, “On equivalence of kelvin and maxwell multielement models”, Avtomobil'nyy transport (Kharkov), 37 (2015), 175–181
[8] Yu. N. Rabotnov, Elements of hereditary mechanics of solids, Nauka, M., 1977
[9] V. V. Moskvitin, Resistance of viscoelastic materials, Nauka, M., 1972
[10] M. A. Koltunov, Creep and relaxation, Vysshaya shkola, M., 1976
[11] A. Yu. Ishlinsky, “On equations of spatial deforming of not quite elastic and viscoplastic bodies”, Izvestiya AN SSR, 1945, no. 3, 24–35
[12] M. Kalmova, G. Pavlov, “Analyzing the influence of the disk motion on longitudinal oscillations of a beam with rheological properties”, MATEC Web of Conferences, 196:4 (2018), 01004 | DOI
[13] A. R. Rzhanitsyn, Some issues of mechanics of the systems deforming with time, Gostekhizdat, M., 1949