Keywords: trench response, nonlinear equations, instant basis.
@article{VTGU_2020_65_a5,
author = {S. O. Gladkov and S. B. Bogdanova},
title = {To the theory of motion of bodies with variable mass},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {83--91},
year = {2020},
number = {65},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_65_a5/}
}
TY - JOUR AU - S. O. Gladkov AU - S. B. Bogdanova TI - To the theory of motion of bodies with variable mass JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2020 SP - 83 EP - 91 IS - 65 UR - http://geodesic.mathdoc.fr/item/VTGU_2020_65_a5/ LA - ru ID - VTGU_2020_65_a5 ER -
S. O. Gladkov; S. B. Bogdanova. To the theory of motion of bodies with variable mass. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 65 (2020), pp. 83-91. http://geodesic.mathdoc.fr/item/VTGU_2020_65_a5/
[1] S. O. Gladkov, S. B. Bogdanova, “Geometrical phase transition in the problem on brachistochrone”, Uchenye zapiski fizicheskogo fakul'teta Moskovskogo universiteta – Memoirs of the Faculty of Physics, Lomonosov Moscow State University, 2016, no. 1, 161101, 1–5
[2] S. O. Gladkov, “On the trajectory of the body immersing in a fluid at an arbitrary angle”, Uchenye zapiski fizicheskogo fakul'teta Moskovskogo universiteta – Memoirs of the Faculty of Physics, Lomonosov Moscow State University, 2016, no. 4, 164002, 1–5
[3] S. O. Gladkov, S. B. Bogdanova, “Generalized dynamic equations for a plane curvilinear motion of a material body in a trench with account for friction forces (their numerical analysis in some particular cases)”, Uchenye zapiski fizicheskogo fakul'teta Moskovskogo universiteta – Memoirs of the Faculty of Physics, Lomonosov Moscow State University, 2017, no. 1, 171101, 1–5
[4] S. O. Gladkov, S. B. Bogdanova, “On the theory of ball motion along a rotating brachistochrone with account for friction forces”, Uchenye zapiski fizicheskogo fakul'teta Moskovskogo universiteta – Memoirs of the Faculty of Physics, Lomonosov Moscow State University, 2017, no. 2, 172101, 1–6
[5] S. O. Gladkov, S. B. Bogdanova, “On the class of two-dimensional geodesic curves in the field of the gravity force”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 8:5 (2019), 5–13 | DOI
[6] A. I. Ivanov, “On the brachistochron of a variable-mass particle with a constant ratio of the number of attached and separated particles”, Doklady AN USSR. Seriya A, 1968, 683–686 | Zbl
[7] A. V. Rusalovskaya, G. I. Ivanov, A. I. Ivanov, “On the brachistochron of a variable-mass point with account for friction and exponential law of mass outflow”, Doklady AN USSR. Seriya A, 1973, 1024–1026 | MR
[8] O. Jeremic, S. Salinic, A. Obradovic, Z. Mitrovic, “On the brachistochrone of a variable mass particle in general force fields”, Mathematical and Computer Modelling, 54:11–12 (2011), 2900–2912 | DOI | MR | Zbl
[9] V. G. Boltyanskiy, Mathematical methods of optimal control, Nauka, M., 1969, 408 pp.
[10] L. Landau, E. Lifshitz, Mechanics, Butterworth-Heinemann, Oxford, 1976 | MR