Unstable displacement in a plane-parallel microchannel
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 65 (2020), pp. 68-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Unstable immiscible water-oil displacement is considered in a Hele-Shaw cell at a constant pressure drop or at a constant flow rate. Unstable displacement in a Hele-Shaw cell with small gaps is characterized by valuable capillary forces, which lead to the displaced phase pinching. The capillary boundary between water and oil represents a curved cylindrical surface with two radii: a radius of 10 pm and a radius that is several orders of magnitude higher and corresponds to a varying shape of the unstable displacement boundary. The power dependence of the fractal dimension on the injected volume of the displacing fluid at a constant pressure drop is revealed, which does not change with the pressure drop increased by 2.5 times. An outburst of the displacing fluid at a constant pressure drop leads to a redistribution of local pressures, a change in structure, and a gradual increase in the velocity of “viscous fingers”. It is shown that the displacement process is characterized by four stages, which alternate almost stepwise in terms of the content of the displaced oil taken relative to the volume of injected water: 100 %, 25 %, 3.5 %, and 0.5 %. At the initial stage, displacement at a constant flow rate is more efficient, while for large volumes, it is more efficient at a constant pressure drop.
Keywords: Hele-Shaw cell, displacement, pressure drop, volume flow rate, “viscous fingers”, capillary forces, viscous instability.
Mots-clés : fractal dimension
@article{VTGU_2020_65_a4,
     author = {A. A. Valiev and A. T. Akhmetov and A. A. Rakhimov},
     title = {Unstable displacement in a plane-parallel microchannel},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {68--82},
     year = {2020},
     number = {65},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_65_a4/}
}
TY  - JOUR
AU  - A. A. Valiev
AU  - A. T. Akhmetov
AU  - A. A. Rakhimov
TI  - Unstable displacement in a plane-parallel microchannel
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 68
EP  - 82
IS  - 65
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_65_a4/
LA  - ru
ID  - VTGU_2020_65_a4
ER  - 
%0 Journal Article
%A A. A. Valiev
%A A. T. Akhmetov
%A A. A. Rakhimov
%T Unstable displacement in a plane-parallel microchannel
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 68-82
%N 65
%U http://geodesic.mathdoc.fr/item/VTGU_2020_65_a4/
%G ru
%F VTGU_2020_65_a4
A. A. Valiev; A. T. Akhmetov; A. A. Rakhimov. Unstable displacement in a plane-parallel microchannel. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 65 (2020), pp. 68-82. http://geodesic.mathdoc.fr/item/VTGU_2020_65_a4/

[1] P. G. Saffman, G. Taylor, “The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid”, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 245:1242 (1958), 312–329 | DOI | MR | Zbl

[2] J. W. McLean, P. G. Saffman, “The effect of surface tension on the shape of fingers in a Hele Shaw cell”, Journal of Fluid Mechanics, 102 (1981), 455–469 | DOI | Zbl

[3] R. V. Telesnin, Molecular physics: a textbook for universities, Vysshaya shkola, M., 1965

[4] A. T. Akhmetov, S. P. Sametov, S. A. Vlasov, Ya. M. Kagan, N. V. Krasnopevtseva, “On the possible mechanism for residual oil saturation reduction”, Theses of reports on the II All-Russian Scientific and Practical Conference “Practical Aspects of Oilfield Chemistry” at the international forum “Big Chemistry” and the XX international specialized exhibition GAZ. OIL. TECHNOLOGIES 2012 (Ufa, 2012), 10–12 | Zbl

[5] A. T. Akhmetov, S. A. Vlasov, Y. M. Kagan, N. V. Krasnopevtseva, “Decrease in residual oil saturation by biopolymer solution”, Oil Gas Journal Russia, 2012, no. 7(62), 71–78

[6] G. M. Homsy, “Viscous fingering in porous media”, Annual review of fluid mechanics, 19:1 (1987), 271–311 | DOI

[7] S. J. Jackson, H. Power, D. Giddings, D. Stevens, “The stability of immiscible viscous fingering in Hele-Shaw cells with spatially varying permeability”, Computer Methods in Applied Mechanics and Engineering, 320 (2017), 606–632 | DOI | MR | Zbl

[8] A. Chesnokov, V. Liapidevskii, “Viscosity-stratified flow in a Hele-Shaw cell”, International Journal of Non-Linear Mechanics, 89 (2017), 168–176 | DOI

[9] M. V. Mavletov, A. A. Valiev, “Efficiency of unstable oil displacement from a Hele-Shaw cell”, Neftepromyslovoe delo – Oilfield Engineering, 8 (2018), 42–45 | DOI

[10] R. Brandao, J. A. Miranda, “Capillary and geometrically driven fingering instability in nonflat HeleShaw cells”, Physical Review E, 95:3 (2017), 033104 | DOI

[11] A. T. Akhmetov, A. A. Valiev, A. A. Rakhimov, S. P. Sametov, “Anisotropic Properties of Blood in a Vessel with Stenosis”, Doklady Physics. Pleiades Publishing, 63:11 (2018), 476–480 | DOI

[12] J. Li, Q. Du, C. Sun, “An improved box-counting method for image fractal dimension estimation”, Pattern Recognition, 42:11 (2009), 2460–2469 | DOI | Zbl

[13] L. G. Loytsyanskiy, Fluid and gas mechanics, Fizmatgiz, M., 1959