Numerical study of swirling turbulent flow aerodynamics and classification of particles in a vortex chamber of a centrifugal machine
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 65 (2020), pp. 137-147 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents a numerical study of swirling turbulent flow aerodynamics, as well as a process of classifying of particles in a vortex chamber of a centrifugal machine. The considered vortex chamber involves the following particular features: a rotor located in the upper part of the chamber, which represents a system of rotating blades, and a central disk element, whose center coincides with a symmetry axis, and which serves to increase a circumferential velocity of the carrier medium. The numerical method that is used to describe the swirling turbulent flow aerodynamics is based on the physical splitting of velocity and pressure fields. Numerical results showed that it is possible to change the shape of the rotor blades, and thus to significantly affect the radial velocity component distribution in a separation zone. As a result, this distribution becomes uniform in height at the rotor inlet, which is a necessary condition for efficient operation of the separator. Based on the computed aerodynamics in the considered region, the motion trajectories for single particles have been obtained, as well as their dependence on the central disk position. Reliability of the numerical results is confirmed by test studies and by a comparison with experimental data.
Keywords: numerical simulation, pressure, aerodynamics, swirling flow, stream function, Wilcox $k-\omega$ model.
Mots-clés : turbulence, vortex, particles
@article{VTGU_2020_65_a10,
     author = {R. R. Turubaev and A. V. Shvab},
     title = {Numerical study of swirling turbulent flow aerodynamics and classification of particles in a vortex chamber of a centrifugal machine},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {137--147},
     year = {2020},
     number = {65},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_65_a10/}
}
TY  - JOUR
AU  - R. R. Turubaev
AU  - A. V. Shvab
TI  - Numerical study of swirling turbulent flow aerodynamics and classification of particles in a vortex chamber of a centrifugal machine
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 137
EP  - 147
IS  - 65
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_65_a10/
LA  - ru
ID  - VTGU_2020_65_a10
ER  - 
%0 Journal Article
%A R. R. Turubaev
%A A. V. Shvab
%T Numerical study of swirling turbulent flow aerodynamics and classification of particles in a vortex chamber of a centrifugal machine
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 137-147
%N 65
%U http://geodesic.mathdoc.fr/item/VTGU_2020_65_a10/
%G ru
%F VTGU_2020_65_a10
R. R. Turubaev; A. V. Shvab. Numerical study of swirling turbulent flow aerodynamics and classification of particles in a vortex chamber of a centrifugal machine. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 65 (2020), pp. 137-147. http://geodesic.mathdoc.fr/item/VTGU_2020_65_a10/

[1] A. V. Shvab, N. S. Evseev, “Studying the separation of particles in a turbulent vortex flow”, Theoretical Foundations of Chemical Engineering, 49:2 (2015), 191–199 | DOI | DOI

[2] A. V. Shvab, R. R. Turubaev, “Simulation of swirling turbulent flow aerodynamics in a centrifugal machine”, Theoretical Foundations of Chemical Engineering, 53:2 (2019), 242–250 | DOI | DOI | MR

[3] P. N. Zyatikov, A. T. Roslyak, A. V. Shvab, A. A. Demidenko, V. I. Romandin, V. N. Brendakov, Gas centrifugal classification and grinding of powders, RF Patent 2522674, 2014 | Zbl

[4] P. J. Roache, Computational Fluid Dynamics, Hermosa Publishers, Albuquerque, 1982 | MR

[5] L. G. Loytsyanskiy, Fluid and gas mechanics, Nauka, M., 1987

[6] A. V. Kuz'minov, V. N. Lapin, S. G. Chernyy, “A computational method for turbulent incompressible fluid flows based on the two-layer $(\kappa-\varepsilon)$-model”, Vychislitel'nye tekhnologii – Computational Technologies, 6:5 (2001), 73–86 | Zbl

[7] A. V. Shvab, Sh. R. Sadretdinov, V. N. Brendakov, “Effects of gas flow and turbulent diffusion on the centrigugal classification of fine particles”, Journal of Applied Mechanics and Technical Physics, 53:2 (2012), 173–181 | DOI | MR | Zbl

[8] D. Anderson, Dzh. Tannehill, R. Pletcher, Computational Fluid Mechanics and Heat Transfer, v. 2, Taylor Francis, London, 1997 | MR | MR

[9] K. N. Volkov, V. N. Emel'yanov, Gas flow with particles, FIZMATLIT, M., 2008

[10] A. V. Shvab, M. S. Martsenko, “Research of motion of a dense bed of a granular medium and mixing process in a tapered channel”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i Mekhanika–Tomsk State University Journal of Mathematics and Mechanics, 2010, no. 4 (12), 123–130

[11] R. R. Turubaev, A. V. Shvab, “Numerical study of swirled flow aerodynamics in the vortex chamber of the combined pneumatic machine”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i Mekhanika–Tomsk State University Journal of Mathematics and Mechanics, 2017, no. 47, 87–98 | DOI | MR

[12] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishsing Corporation, New York, 1980 | Zbl

[13] D. Anderson, Dzh. Tannehill, R. Pletcher, Computational Fluid Mechanics and Heat Transfer, v. 1, Taylor Francis, London, 1997 | MR

[14] Singh A, B. D. Vyas, U. S. Powle, “Investigations on inward flow between two stationary parallel disks”, Int. J. Heat and Fluid Flow, 20:4 (1999), 395–401 | DOI

[15] D. C. Wilcox, “Reassessment of the scale determining equation for advanced turbulence models”, Amer. Inst. of Aeron. And Astron., 26:11 (1988), 1299–1310 | DOI | MR | Zbl