@article{VTGU_2020_65_a0,
author = {A. A. Abdullayev and T. G. Ergashev},
title = {Poincare{\textendash}Tricomi problem for the equation of a mixed elliptico-hyperbolic type of second kind},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {5--21},
year = {2020},
number = {65},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_65_a0/}
}
TY - JOUR AU - A. A. Abdullayev AU - T. G. Ergashev TI - Poincare–Tricomi problem for the equation of a mixed elliptico-hyperbolic type of second kind JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2020 SP - 5 EP - 21 IS - 65 UR - http://geodesic.mathdoc.fr/item/VTGU_2020_65_a0/ LA - ru ID - VTGU_2020_65_a0 ER -
%0 Journal Article %A A. A. Abdullayev %A T. G. Ergashev %T Poincare–Tricomi problem for the equation of a mixed elliptico-hyperbolic type of second kind %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2020 %P 5-21 %N 65 %U http://geodesic.mathdoc.fr/item/VTGU_2020_65_a0/ %G ru %F VTGU_2020_65_a0
A. A. Abdullayev; T. G. Ergashev. Poincare–Tricomi problem for the equation of a mixed elliptico-hyperbolic type of second kind. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 65 (2020), pp. 5-21. http://geodesic.mathdoc.fr/item/VTGU_2020_65_a0/
[1] M. B. Kapilevich, “Confluent hypergeometric Horn functions”, Differentsialnye Uravneniya–Differential Equations, 2:9 (1966), 1239–1254 | MR | Zbl
[2] A. K. Urinov, T. G. Ergashev, “Confluent hypergeometric functions of many variables and their application to the finding of fundamental solutions of the generalized Helmholtz equation with singular coefficients”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika–Tomsk State University Journal of Mathematics and Mechanics, 2018, no. 55, 45–56 | DOI
[3] H. M. Srivastava, A. Hasanov, J. Choi, “Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation”, Sohag J. Math., 2:1 (2015), 1–10 | DOI
[4] Berdyshev A.S, A. Hasanov, T. G. Ergashev, “Double-layer potentials for a generalized biaxially symmetric Helmholtz equation. II”, Complex Variables and Elliptic Equations, 65:2 (2020), 316–332 | DOI | MR | Zbl
[5] T. G. Ergashev, “Third double-layer potential for a generalized bi-axially symmetric Helmholtz equation”, Ufa Mathematical Journal, 10:4 (2018), 111–121 | DOI | MR | Zbl
[6] T. G. Ergashev, “The fourth double-layer potential for a generalized bi-axially symmetric Helmholtz equation”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika–Tomsk State University Journal of Mathematics and Mechanics, 2017, no. 50, 45–56 | DOI
[7] M. S. Salakhitdinov, T. G. Ergashev, “Integral representation of a generalized solution of the Cauchy problem in the class $R_{2k}^\lambda$ for a hyperbolic equation of the second kind”, Uzbekskiy matematicheskiy zhurnal–Uzbek Mathematical Journal, 1995, no. 1, 67–75
[8] I. L. Karol, “A boundary value problem for an equation of mixed elliptichyperbolic type”, Doklady AN SSSR–Reports of the Academy of Sciences of the USSR, 88:2 (1953), 197–200 | MR | Zbl
[9] T. G. Ergashev, “Generalized solutions of the degenerate hyperbolic equation of the second kind with a spectral parameter”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika–Tomsk State University Journal of Mathematics and Mechanics, 2017, no. 46, 41–49 | DOI
[10] K. B. Sabitov, S. L. Bibakova, “Construction of eigenfunctions of the Tricomi-Neumann problem for equations of mixed type with characteristic degeneration and their application”, Mathematical Notes, 74:1 (2003), 70–80 | DOI | MR | Zbl
[11] I. T. Tojiboev, “Boundary problems in a special domain for an equation of mixed type”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika–Tomsk State University Journal of Mathematics and Mechanics, 2018, no. 56, 17–28 | DOI | MR
[12] R. S. Khairullin, The Tricomi problem for an equation of the second kind with strong degeneracy, Kazan University, Kazan, 2015
[13] N. K. Mamadaliev, “On representation of a solution to a modified Cauchy problem”, Siberian Mathematical Journal, 41:5 (2000), 889–899 | DOI | MR | Zbl
[14] V. M. Dolgopolov, M. V. Dolgopolov, I. N. Rodionova, “Construction of a special class of solutions for some differential equations of hyperbolic type”, Doklady Mathematics, 80 (2009), 860–866 | DOI | MR | Zbl
[15] M. M. Smirnov, Equations of the mixed type, Vysshaya shkola, M., 1985 | MR
[16] M. M. Smirnov, “Mixed problem for the equation $y^mu_{xx}+u_{yy}=0$”, Siberian Mathematical Journal, 4:5 (1963), 1150–1161 | MR | Zbl
[17] T. G. Ergashev, N. M. Safarbayeva, “Dirichlet problem for the multidimensional Helmholtz equation with one singular coefficient”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika–Tomsk State University Journal of Mathematics and Mechanics, 2019, no. 6, 55–67 | DOI
[18] M. S. Salakhitdinov, A. A. Abdullayev, “Nonlocal boundary value problem for a mixed type equation of the second kind”, Doklady AN Respubliki Uzbekistan–Reports of the Academy of Sciences of the Republic of Uzbekistan, 2013, no. 1, 3–5
[19] B. I. Islomov, A. A. Abdullayev, “On a problem for an elliptic type equation of the second kind with a conormal and integral condition”, Journal Nanosystems: Physics, Chemistry, Mathematics, 9:3 (2018), 307–318 | DOI
[20] M. S. Salokhitdinov, B. I. Islomov, The equations of the mixed type with two lines of degeneration, Mumtoz so'z, Tashkent, 2009
[21] M. M. Smirnov, Equations of the mixed type, Nauka, M., 1970
[22] N. I. Muskhelishvili, Singular integral equations, Nauka, M., 1968