@article{VTGU_2020_64_a8,
author = {M. V. Mir-Salim-zada},
title = {An equi-stress hole for a stringer plate with cracks},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {121--135},
year = {2020},
number = {64},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_64_a8/}
}
M. V. Mir-Salim-zada. An equi-stress hole for a stringer plate with cracks. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 64 (2020), pp. 121-135. http://geodesic.mathdoc.fr/item/VTGU_2020_64_a8/
[1] G. P. Cherepanov, “Inverse elastic-plastic problem under plane deformation”, Izvestiya AN SSSR. Mekhanika i mashinostroenie, 1963, no. 2, 57–60 | Zbl
[2] G. P. Cherepanov, “Inverse problems of the plane theory of elasticity”, Journal of Applied Mathematics and Mechanics, 38:6 (1974), 915–931 | DOI | MR | Zbl
[3] V. M. Mirsalimov, “On the optimum shape of apertures for a perforated plate subject to bending”, Journal of Applied Mechanics and Technical Physics, 15:6 (1974), 842–845 | DOI
[4] V. M. Mirsalimov, “Converse problem of elasticity theory for an anisotropic medium”, Journal of Applied Mechanics and Technical Physics, 16:4 (1975), 645–648 | DOI | DOI | MR
[5] L. M. Kurshin, P. N. Onoprienko, “Determination of the shapes of doubly-connected bar sections of maximum torsional stiffness”, Journal of Applied Mathematics and Mechanics, 40:6 (1976), 1020–1026 | DOI | MR | Zbl
[6] S. B. Vigdergauz, “Integral equations of the inverse problem of the theory of elasticity”, Journal of Applied Mathematics and Mechanics, 40:3 (1976), 518–522 | DOI | Zbl
[7] L. Wheeler, “On the role of constant-stress surfaces in the problem of minimizing elastic stress concentration”, Int. J. of Solids and Structures, 12:11 (1976), 779–789 | DOI | Zbl
[8] N. V. Banichuk, “Optimality conditions in the problem of seeking the hole shapes in elastic bodies”, Journal of Applied Mathematics and Mechanics, 41:5 (1977), 946–951 | DOI | MR | MR
[9] V. M. Mirsalimov, “Inverse doubly periodic problem of thermoelasticity”, Mechanics of Solids, 12:4 (1977), 147–154
[10] S. B. Vigdergauz, Journal of Applied Mathematics and Mechanics, 41:5 (1977), 927–933 | DOI | MR
[11] V. M. Mirsalimov, “A working of uniform strength in the solid rock”, Soviet Mining, 15:4 (1979), 327–330 | DOI | DOI
[12] N. V. Banichuk, Shape optimization for elastic bodies, Nauka, M., 1980
[13] N. I. Ostrosablin, Journal of Applied Mechanics and Technical Physics, 22:2 (1981), 271–277 | DOI | MR
[14] L. T. Wheeler, “Stress minimum forms for elastic solids”, ASME. Appl. Mech. Rev., 45:1 (1992), 1–12 | DOI | MR
[15] G. P. Cherepanov, “Optimum shapes of elastic solids with infinite branches”, J. Appl. Mech. ASME, 62:2 (1995), 419–422 | DOI | Zbl
[16] M. P. Savruk, V. S. Kravets, “Application of the method of singular integral equations to the determination of the contours of equistrong holes in plates”, Materials Science, 38:1 (2002), 34–46 | DOI
[17] R. Bantsuri, Sh. Mzhavanadze, “The mixed problem of the theory of elasticity for a rectangle weakened by unknown equi-strong holes”, Proceedings of A. Razmadze Mathematical Institute, 145 (2007), 23–34 | MR
[18] M. V. Mir-Salim-zada, “Inverse elastoplastic problem for a riveted perforated plate”, Sbornik statey «Sovremennye problemy prochnosti, plastichnosti i ustoychivosti» – Collected papers «Modern problems of strength, plasticity, and stability», TGTU, Tver', 2007, 238–246
[19] G. Kapanadze, “On one problem of the plane theory of elasticity with a partially unknown boundary”, Proceedings of A. Razmadze Mathematical Institute, 143 (2007), 61–71 | MR | Zbl
[20] M. V. Mir-Salim-zada, “Determination of an equistrong hole shape in isotropic medium reinforced by a regular system of stringers”, Materialy, tekhnologii, instrumenty, 12:4 (2007), 10–14 | MR
[21] G. P. Cherepanov, “Optimum shapes of elastic bodies: equistrong wings of aircrafts and equistrong underground tunnels”, Physical Mesomechanics, 18 (2015), 391–401 | DOI
[22] N. M. Kalantarly, “Equistrong hole shape for a crack growth deceleration under longitudinal shear”, Problemy mashinostroeniya Journal of Mechanical Engineering, 20:4 (2017), 31–37
[23] S. Vigdergauz, “Simply and doubly periodic arrangements of the equi-stress holes in a perforated elastic plane: The single-layer potential approach”, Mathematics and Mechanics of Solids, 23:5 (2018), 805–819 | DOI | MR | Zbl
[24] V. M. Mirsalimov, “Maximum strength of opening in crack-weakened rock mass”, Journal of Mining Science, 55:1 (2019), 9–17 | DOI | DOI
[25] N. I. Muskhelishvili, Some Basic Problem of Mathematical Theory of Elasticity, Kluwer, Amsterdam, 1977 | MR | MR
[26] A. I. Kalandiya, Mathematical methods for two-dimensional elasticity, Nauka, M., 1973 | MR
[27] V. V. Panasyuk, M. P. Savruk, A. P. Datsyshin, Stress distribution around cracks in plates and shells, Naukova Dumka, Kiev, 1976 | MR
[28] V. M. Mirsalimov, “Some problems of structural arrest of cracks”, Soviet Materials Science, 22:1 (1986), 81–85 | DOI | DOI