On one approach to the assessing of the adhesive layer strength in a layered composite
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 64 (2020), pp. 63-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of a stress-strain state of a composite with undefined geometry of the face break of the adhesive layer is formulated and solved. A concept of the interactive layer is used which implies uniformity of the stress-strain state over adhesive layer thickness. In accordance with Timoshenko's hypotheses for displacements of the bearing layers, the problem is reduced to a system of linear differential equations. The reliability of the obtained analytical solution is confirmed by the numerical calculation with no additional hypotheses introduced. The product of the specific free energy by layer thickness, referred to as an energy product, is revealed to be applicable as a criterion of the adhesive layer destruction. On the basis of the analytical solution, a threshold value of the adhesive layer thickness is determined. A decrease in the latter does not affect the energy product value. Thus, employing the energy product as a criterion of destruction, calculations can be performed at any value of the adhesive layer thickness arbitrarily chosen in the range of the energy product suability.
Keywords: adhesive layer, finite element method, energy product.
Mots-clés : composite, variational equation
@article{VTGU_2020_64_a4,
     author = {V. E. Bogacheva and V. V. Glagolev and L. V. Glagolev and O. V. Inchenko and A. A. Markin},
     title = {On one approach to the assessing of the adhesive layer strength in a layered composite},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {63--77},
     year = {2020},
     number = {64},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_64_a4/}
}
TY  - JOUR
AU  - V. E. Bogacheva
AU  - V. V. Glagolev
AU  - L. V. Glagolev
AU  - O. V. Inchenko
AU  - A. A. Markin
TI  - On one approach to the assessing of the adhesive layer strength in a layered composite
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 63
EP  - 77
IS  - 64
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_64_a4/
LA  - ru
ID  - VTGU_2020_64_a4
ER  - 
%0 Journal Article
%A V. E. Bogacheva
%A V. V. Glagolev
%A L. V. Glagolev
%A O. V. Inchenko
%A A. A. Markin
%T On one approach to the assessing of the adhesive layer strength in a layered composite
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 63-77
%N 64
%U http://geodesic.mathdoc.fr/item/VTGU_2020_64_a4/
%G ru
%F VTGU_2020_64_a4
V. E. Bogacheva; V. V. Glagolev; L. V. Glagolev; O. V. Inchenko; A. A. Markin. On one approach to the assessing of the adhesive layer strength in a layered composite. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 64 (2020), pp. 63-77. http://geodesic.mathdoc.fr/item/VTGU_2020_64_a4/

[1] V. V. Bolotin, Yu. N. Novichkov, Mechanics of multilayer constructures, Mashinostroenie, M., 1980

[2] G. P. Cherepanov, Fracture mechanics of composite materials, Nauka, M., 1974, 640 pp.

[3] H. G. Allen, Z. Feng, “Classification of Structural Sandwich Panel Behaviour”, Mechanics of Sandwich Structures, Springer, Dordrecht, 1998, 1–12 | DOI

[4] S. Lurie, D. Volkov-Bogorodskii, N. Tuchkova, “Exact solution of Eshelby-Christensen problem in gradient elasticity for composites with spherical inclusions”, Acta Mechanica, 227 (2016), 127–138 | DOI | MR | Zbl

[5] O. Mattei, L. Bardella, “A structural model for plane sandwich beams including transverse core deformability and arbitrary boundary conditions”, Eur. J. Mech. A-Solid, 58 (2016), 172–186 | DOI | MR | Zbl

[6] E. Panettieri, D. Fanteria, F. Danzi, “Delaminations growth in compression after impact test simulations: Influence of cohesive elements parameters on numerical results”, Composite Structures, 137 (2016), 140–147 | DOI

[7] A. Panteghini, L. Bardella, “Structural theory and finite element modelling of linear elastic sandwich beams”, Eur. J. Mech. A-Solid, 61 (2017), 393–407 | DOI | MR | Zbl

[8] R. V. Gol'dshteyn, N. M. Osipenko, “Delamination of coatings under the action of thermoelastic stresses (beam approximation)”, Vestnik Samarskogo Universiteta. Estestvennonauchnaya seriya – Vestnik of Samara University. Natural Science Series, 54:4 (2007), 66–83

[9] I. Sheinman, G. Kardomateas, “Energy release rate and stress intensity factors for delaminated composite laminates”, International Journal of Solids and Structures, 34:4 (1997), 451–459 | DOI | Zbl

[10] B. Storakers, B. Andersson, “Nonlinear plate theory applied to delamination in composites”, Journal of Mechanics and Physics Solids, 36:6 (1988), 689–718 | DOI | MR | Zbl

[11] K. B. Ustinov, “On separation of a layer from the half-plane: elastic fixation conditions for a plate equivalent to the layer”, Mechanics of Solids, 50:1 (2015), 62–80 | DOI

[12] A. G. Evams, J. W. Hutchinson, “On the mechanics of delamination and spelling on compressed films”, International Journal of Solids and Structures, 20:5 (1984), 455–466 | DOI | MR

[13] I. S. Astapov, N. S. Astapov, V. M. Kornev, “Model of composite exfoliation with transverse shear”, Mekhanika kompozitsionnykh materialov i konstruktsiy, 21:2 (2015), 149–161 | MR

[14] A. Baldan, “Adhesively-bonded joints in metallic alloys, polymers and composite materials: Mechanical and environmental durability performance”, Journal of Materials Science, 39:15 (2004), 4729–4797 | DOI

[15] C. T. Sun, C. J. Jih, “On strain energy release rates for interfacial cracks in bi-material media”, Engineering Fracture Mechanics, 28:1 (1987), 13–20 | DOI

[16] L. Yu. Frolenkova, V. S. Shorkin, “Surface energy and adhesion energy of elastic bodies”, Mechanics of Solids, 52:1 (2017), 62–74 | DOI

[17] Z. Suo, J. W. Hutchinson, “Interface crack between two elastic layers”, International Journal of Fracture, 43:1 (1990), 1–18 | DOI

[18] J. L. Mantari, J. Yarasca, “A simple and accurate generalized shear deformation theory for beams”, Composite Structures, 134 (2015), 593–601 | DOI

[19] R. P. Joseph, B. L. Wang, B. Samali, “Size effects on double cantilever beam fracture mechanics specimen based on strain gradient theory”, Engineering Fracture Mechanics, 169 (2017), 309–320 | DOI

[20] S. P. Timoshenko, S. Voynovskiy-Kriger, Plates and shells, Fizmatgiz, M., 1963, 636 pp.

[21] M. A. Osipenko, “The contact problem for bending of a two-leaf spring with variable thicknesses of leaves”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika Tomsk State University Journal of Mathematics and Mechanics, 2014, no. 1 (27), 90–94

[22] X. Fang, P. G. Charalambides, “The fracture mechanics of cantilever beams with an embedded sharp crack under end force loading”, Engineering Fracture Mechanics, 149 (2015), 1–17 | DOI

[23] X. Fang, P. G. Charalambides, “A J-integral approach in characterizing the mechanics of a horizontal crack embedded in a cantilever beam under an end transverse force”, Engineering Fracture Mechanics, 169 (2017), 35–53 | DOI

[24] N. F. Morozov, P. Y. Tovstik, “Bending of a two-layer beam with non-rigid contact between the layers”, Journal of Applied Mathematics and Mechanics, 75:1 (2011), 77–84 | DOI | Zbl

[25] N. F. Morozov, P. E. Tovstik, T. P. Tovstik, “Generalized Timoshenko-Reissner model for a multilayer plate”, Mechanics of Solids, 51:5 (2016), 527–537 | DOI | MR

[26] V. V. Glagolev, A. A. Markin, A. A. Fursaev, “Separation process modeling of composite with adhesive layer”, PNRPU Mechanics Bulletin, 2016, no. 2, 34–44 | DOI

[27] V. V. Glagolev, A. A. Markin, S. V. Pashinov, “Bimetallic plate in a uniform temperature field”, Mekhanika kompozitsionnykh materialov i konstruktsiy, 23:3 (2017), 331–343 | DOI

[28] V. V. Glagolev, A. A. Markin, A. A. Fursaev, “Modelling the generation of new material surfaces in a composite with an adhesion layer under cohesive destruction”, PNRPU Mechanics Bulletin, 2017, no. 2, 45–59 | DOI

[29] V. V. Glagolev, A. A. Markin, “Fracture models for solid bodies, based on a linear scale parameter”, International Journal of Solids and Structures, 158 (2019), 141–149 | DOI