@article{VTGU_2020_64_a3,
author = {V. V. Churuksaeva and A. V. Starchenko},
title = {Numerical modelling of pollution transport in {Tom} river},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {48--62},
year = {2020},
number = {64},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_64_a3/}
}
TY - JOUR AU - V. V. Churuksaeva AU - A. V. Starchenko TI - Numerical modelling of pollution transport in Tom river JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2020 SP - 48 EP - 62 IS - 64 UR - http://geodesic.mathdoc.fr/item/VTGU_2020_64_a3/ LA - en ID - VTGU_2020_64_a3 ER -
V. V. Churuksaeva; A. V. Starchenko. Numerical modelling of pollution transport in Tom river. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 64 (2020), pp. 48-62. http://geodesic.mathdoc.fr/item/VTGU_2020_64_a3/
[1] J. Kuipers, C. B. Vreugdenhil, Calculations of two-dimensional horisontal flow, Report on basic research, Delft Hydraulic laboratory, Delft, 1973, 163 pp.
[2] A. G. Marchuk, “Computing of tsunami heights above the inclined bottom relief within the wave-ray approach”, Siberian Journal of Numerical Mathematics, 18:4 (2015), 377–388 (in Russian) | Zbl
[3] P. Sauvaget, E. David, C. Soares, “Modelling tidal currentsonthe coast of Portugal”, Coastal Engineering, 40 (2000), 393–409 | DOI
[4] M. J. Castro D{\i}az, E. D. Fernandez-Nieto, A. M. Ferreiro, “Sediment transport models in Shallow Water equations and numerical approach by high order finite volume methods”, Computers Fluids, 37 (2007), 299–316 | DOI | MR
[5] L. A. Krukier, “Mathematical modeling of hydrodynamic processes in Azov Sea”, Patterns of Oceanographic and Biological Processes in Azov Sea, KSC RAS, Apatity, 2000, 129–163 (in Russian)
[6] A. L. Chikin, “Construction and numerical investigation of the 3D hydrodynamic model of Azov sea”, Proceedings of International Conference RDAMM-2001, 2001, 686–692 (in Russian)
[7] I. N. Shabas, “Mathematical modeling of the transport of multicomponent contaminant in Azov sea on multiprocessor systems”, Izvestiya SFedU. Engineering Sciences, 2014, no. 12(161), 200–210 (in Russian)
[8] L. Yu, S. P. Zhu, “Numerical simulation of discharged waste heat and contaminants into the south estuary of the Yangtze River”, Mathematical and Computer Modelling, 18:12 (1993), 107–123 | DOI | MR | Zbl
[9] N. R.B. Olsen, S. Stokseth, “Three-dimensional numerical modelling of water flow in a river with large bed roughness”, Journal of Hydraulic Research, 33 (1995), 571–581 | DOI
[10] J. Hou, F. Simons, M. Mahgoub, R. Hinkelmann, “A robust well-balanced model on unstructured grids for shallow water flows with wetting and drying over complex topography”, Computer Methods in Applied Mechanics and Engineering, 257 (2013), 126–149 | DOI | MR | Zbl
[11] L. Cea, J. Puertas, M. E. Vazquez-Cendon, “Depth averaged modelling of turbulent shallow water flow with wet-dry fronts”, Archives of Computational Methods in Engineering, 14:3 (2007), 303–341 | DOI | MR | Zbl
[12] A. T. Zinov'ev, K. V. Marusin, A. A. Shibkih, V. A. Shlychkov, M. V. Zatinatskij, “Mathematical modeling of the flow dynamics and bed deformations on the section of Ob' river near the city of Barnaul”, Polzunovskij vestnik, 2006, no. 2, 204–209 (in Russian)
[13] A. T. Zinov'ev, K. V. Marusin, A. A. Shibkih, V. A. Shlychkov, M. V. Zatinatskij, “Modeling of bed processes to evaluate results of dredging the river bed”, Polzunovskij vestnik, 2006, no. 2, 197–203 (in Russian)
[14] T. P. Lyubimova, A. P. Lepihin, YA. N. Parshakova, A. I. Tiunov, “Numerical modeling of dilution of highly mineralized brines in turbulent flows”, Computational continuum mechanics, 4:3 (2010), 68–79 (in Russian) | DOI
[15] E. D. Karepova, “Modeling of the unsteady flow in the lower pool of the Boguchany HES”, Computational Technologies, 13:2 (2008), 28–38 | Zbl
[16] V. M. Belolipetskij, S. N. Genova, V. I. Petrashkevich, “Numerical modeling of pollutant transport in a river flow”, Proceedings of International conference RDAMM-2001, 2001, 127–133 (in Russian) | MR
[17] P. Finaud-Guyot, C. Delenne, V. Guinot, C. Llovel, “1D-2D coupling for river flow modeling”, Comptes Rendus Mecanique, 339 (2011), 226–234 | DOI | Zbl
[18] E. D. Fernandez-Nieto, J. Marin, J. Monnier, “Coupling superposed 1D and 2D shallow-water models: Source terms in finite volume schemes”, Computers Fluids, 39 (2010), 1070–1082 | DOI | MR | Zbl
[19] O. V. Bulatov, T. G. Elizarova, “Regularized shallow water equations and an effective method for numerical modeling of the flow in shallow basins”, Journal of Computational Mathematics and Mathematical Physics, 2011, no. 1(51), 170–184 (in Russian) | MR | Zbl
[20] S. Kang, A. Lightbody, C. Hill, F. Sotiropoulos, “High-resolution numerical simulation of turbulence in natural waterways”, Advances in Water Resources, 34 (2011), 98–113 | DOI
[21] S. Kang, F. Sotiropoulos, “Numerical modeling of 3D turbulent free surface flow in natural waterways”, Advances in Water Resources, 40 (2012), 23–36 | DOI
[22] S. K. Sandiv, F. Sotiropoulos, A. J. Odgaard, “Three-dimensional numerical model for flow through natural rivers”, Journal of Hydraulic Engeneering, 124 (1998), 13–24 | DOI
[23] V. Rodi, “Models of turbulence in the environment”, Methods of Measuring Turbulent Flows, 1984, 276378 (in Russian)
[24] S. Babarutsi, V. H. Chu, “Modelling transverse mixing layer in shallow open-channel flows”, Journal of Hydraulic Engineering, 1998, no. 7(124), 718–727 | DOI
[25] L. Yu, A. M. Righetto, “Depth-averaged k-omega turbulence model and application”, Advances in Engineering Software, 32 (2001), 375–394 | DOI | Zbl
[26] A. K. Rastogi, W. Rodi, “Predictions of heat and mass transfer on open channels”, J. Hydraul. Div. HY, 1978, 397–420
[27] S. E. Kim, D. Choudhury, “A near-wall treatment using wall functions sensitized to pressure gradient”, ASME FED Separated and Complex Flows, 217 (1995), 273–280
[28] V. Yakhot, S. A. Orzsag, S. Tangam, T. B. Gatski, C. G. Speziale, “Development of turbulence models for shear flows by a double expansion technique”, Phys. Fluids A, 4:7 (1992), 1510–1520 | DOI | MR | Zbl
[29] W. Wu, P. Wang, N. Chiba, “Comparison of five depth-averaged 2-D turbulence models for river flows”, Archives of Hydro-Engibeering and Environmental Mechanics, 51:2 (2004), 183–200
[30] S. Babarutsi, M. Nassiri, V. H. Chu, “Computation of shallow recirculating flow dominated by friction”, Journal of Hydraulic Engineering, 122:7 (1996), 367–372 | DOI
[31] S. Barbarutsi, V. H. Chu, “A two-length-scale model for quasi two-dimensional turbulent shear flows”, Proc 24th congr of IAHR. C, 1991, 51–60
[32] River2D Hydrodynamic Model for Fish Habitat, River2D, , 2002 http://www.river2d.ualberta.ca/
[33] V. V. Churuksaeva, A. V. Starchenko, “A mathematical model and numerical method for computation of a turbulent river stream”, Tomsk State University Journal of Mathematics and Mechanics, 2015, no. 6(38), 100–114 (in Russian) | DOI
[34] V. V. Gromova, M. D. Mihailov, “Numerical modeling of self-cleaning processes in the river accounting for additional wastewater treatment”, Current problems in mathematics and mechanics, The second state young scientists conference devoted to the 90th anniversary from the day of academician N.N. Yanenko's birthday (October 12-14, 2011), 2011, 254–259 (in Russian)
[35] B. E. Launder, D. B. Spalding, “The numerical computation of turbulent flows”, Computer Methods in Applied Mechanics and Engineering, 2:3 (1974), 269–289 | DOI
[36] V. A. Vavilin, Nonlinear models of biological wastewater treatment and self-cleaning processes in rivers, Nauka, M., 1983 (in Russian)
[37] M. Cada, M. Torrilhon, “Compact third-order limiter functions for finite volume methods”, Journal of Computational Physics, 228 (2009), 4118–4145 | DOI | MR | Zbl
[38] A. Harten, “High resolution schemes for hyperbolic conservation laws”, Journal of Computational Physics, 49 (1983), 357–393 | DOI | MR | Zbl
[39] S. V. Patankar, Numerical heat transfer and fluid flow, Hemisphere Publishing Corporation, Washington, DC, 1980 | Zbl
[40] H. J. de Vriend, H. J. Geldof, Main flow velocity in short and sharply curved river bends, Department of Civil Engineering Delft University of Technology, Delft, 1983, 83 pp.
[41] V. T. Chow, Open Channel Hydraulics, McGraw-Hill, New York, 1959
[42] Y. S. Zav'yalov, B. I. Kvasov, V. L. Miroshnichenko, Methods of spline functions, Nauka, M., 1980 (in Russian) | MR | Zbl
[43] A. S. Tarasov, D. A. Vershinin, “Building a predictive model of ice jam occurrence on the branched site of the Tom' river with hydrological computer modelling”, Tomsk State University Journal, 2015, no. 390, 218–224 (in Russian) | DOI
[44] V. A. L'gotin, Y. V. Makushin, O. G. Savichev, Information Resources. Tomskgeomonitoring Regional Center, , 2005 (in Russian) http://www.tgm.ru