@article{VTGU_2020_64_a2,
author = {N. A. Kucher and A. A. Zhalnina and O. V. Malyshenko},
title = {On the existence of strong solutions to regularized equations of viscous compressible fluid mixtures},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {31--47},
year = {2020},
number = {64},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_64_a2/}
}
TY - JOUR AU - N. A. Kucher AU - A. A. Zhalnina AU - O. V. Malyshenko TI - On the existence of strong solutions to regularized equations of viscous compressible fluid mixtures JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2020 SP - 31 EP - 47 IS - 64 UR - http://geodesic.mathdoc.fr/item/VTGU_2020_64_a2/ LA - ru ID - VTGU_2020_64_a2 ER -
%0 Journal Article %A N. A. Kucher %A A. A. Zhalnina %A O. V. Malyshenko %T On the existence of strong solutions to regularized equations of viscous compressible fluid mixtures %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2020 %P 31-47 %N 64 %U http://geodesic.mathdoc.fr/item/VTGU_2020_64_a2/ %G ru %F VTGU_2020_64_a2
N. A. Kucher; A. A. Zhalnina; O. V. Malyshenko. On the existence of strong solutions to regularized equations of viscous compressible fluid mixtures. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 64 (2020), pp. 31-47. http://geodesic.mathdoc.fr/item/VTGU_2020_64_a2/
[1] K. R. Rajagopal, L. Tao, Mechanics of Mixtures, World Sci, Singapore, 1995 | MR | Zbl
[2] A. N. Kraiko, R. I. Nigmatulin, “Mechanics of multiphase media”, Itogi nauki. Gidromekhanika, 6, 1972, 93–174 (in Russian)
[3] A. V. Kazhikov, A. N. Petrov, “Well-posedness of the initial-boundary value problem for a model system of equations of a multicomponent mixture”, Dinamika sploshnoy sredy, 1978, no. 35, 61–73 (in Russian)
[4] A. N. Petrov, “Well-posedness of the initialboundary value problem for one-dimensional equations of mutually penetrating motion of perfect gases”, Dinamika sploshnoy sredy, 56 (1982), 105–121 (in Russian)
[5] A. A. Zlotnik, “Uniform estimates and stabilization of solutions to a system of equations of the one-dimensional motion of a multicomponent barotropic mixture”, Matematicheskie zametki, 58:2 (1995), 307–312 (in Russian) | Zbl
[6] J. Frehse, S. Goj, J. Malek, “On a Stokes-like system for mixtures of fluids”, SIAM J. Math. Anal., 36:4 (2005), 1259–1281 | DOI | MR | Zbl
[7] J. Frehse, S. Goj, J. Malek, “A uniqueness result for a model for mixtures in the absence of external forces and interaction momentum”, Appl. Math., 50:6 (2005), 527–541 | DOI | MR | Zbl
[8] J. Frehse, W. Weigant, “On quasi-stationary models of mixtures of compressible fluids”, Appl. Math., 53:4 (2008), 319–345 | DOI | MR | Zbl
[9] N. A. Kucher, D. A. Prokudin, “Stationary solutions to the equations of a mixture of viscous compressible fluids”, Sibirskiy zhurnal industrial'noy matematiki, 12:3 (31) (2009), 52–65 (in Russian) | MR | Zbl
[10] N. A. Kucher, D. A. Prokudin, “Well-posedness of the first boundary value problem for equations of mixtures of viscous compressible fluids”, Vestnik Novosibirskogo gosudarstvennogo universiteta. Ser. Mat. Mekh. Inform., 9:3 (2009), 33–53 (in Russian) | Zbl
[11] N. A. Kucher, A. E. Mamontov, D. A. Prokudin, “Stationary solutions to the equations of dynamics of mixtures of heat-conductive compressible viscous fluids”, Sib. Math. J., 53:6 (2012), 1075–1088 | DOI | MR | Zbl
[12] A. Novotny, I. Straskraba, Introduction to mathematical theory of compressible flow, Oxford University Press, New York, 2004 | MR | Zbl