@article{VTGU_2020_64_a10,
author = {O. N. Shablovsky},
title = {Spherical flow of an ideal fluid in a spatially nonuniform field of force},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {146--155},
year = {2020},
number = {64},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_64_a10/}
}
TY - JOUR AU - O. N. Shablovsky TI - Spherical flow of an ideal fluid in a spatially nonuniform field of force JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2020 SP - 146 EP - 155 IS - 64 UR - http://geodesic.mathdoc.fr/item/VTGU_2020_64_a10/ LA - ru ID - VTGU_2020_64_a10 ER -
O. N. Shablovsky. Spherical flow of an ideal fluid in a spatially nonuniform field of force. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 64 (2020), pp. 146-155. http://geodesic.mathdoc.fr/item/VTGU_2020_64_a10/
[1] M. A. Goldshtik, V. N. Shtern, N. I. Yavorskiy, Viscous flows with paradoxical properties, Nauka, Novosibirsk, 1989 | MR
[2] V. I. Gryn', “On families of exact solutions to the steady-state Euler and Navier-Stokes equations”, Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki–Computational Mathematics and Mathematical Physics, 38 (1998), 1421–1422 | Zbl
[3] Yu. D. Shmyglevskiy, Analytical studies of gas and fluid dynamics, Editorial URSS, M., 1999
[4] M. I. Ivanov, “Tangential vibrations of a differentially rotating spherical layer of a fluid”, Izvestiya RAN. Mekhanika zhidkosti i gaza–Proceedings of the Russian Academy of Sciences. Fluid and Gas Mechanics, 2009, no. 2, 146–154 | Zbl
[5] O. N. Shablovsky, “A spherical flow of a viscous fluid with momentum and energy sources”, Fundamentalnye fiziko-matematicheskie problemy i modelirovanie tekhniko-tekhnologicheskikh sistem, 15, 2013, 219–235
[6] S. V. Manuylovich, “Longitudinally periodic flow of a viscous fluid generated by near-wall volume force”, Izvestiya RAN. Mekhanika zhidkosti i gaza–Fluid Dynamics, 4 (2015), 59–67 | MR | Zbl
[7] V. I. Yudovich, “Two-dimensional unsteady problem of an ideal incompressible fluid flow through a given region”, Matematicheskiy sbornik–Sbornik: Mathematics, 64 (1964), 562–588
[8] A. V. Kazhikhov, “A remark on the flux problem formulation in equations for an ideal fluid”, Prikladnaya matematika i mekhanika–Journal of Applied Mathematics and Mechanics, 44 (1980), 947–949 | MR | Zbl
[9] M. V. Korobkov, K. Piletskas, V. V. Pukhnachev, R. Russo, “The flux problem for the Navier-Stokes equations”, Russian Mathematical Surveys, 69:6 (2014), 1065–1122 | DOI | MR | Zbl
[10] V. N. Govorukhin, “A vortex method for computing two-dimensional inviscid incompressible flows”, Computational Mathematics and Mathematical Physics, 51:6 (2011), 1061–1073 | DOI | MR | Zbl
[11] V. V. Pukhnachev, “Three-dimensional flux problem for the Navier-Stokes equations”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya «Matematicheskoe modelirovanie i programmirovanie», 8:2 (2015), 95–104 | DOI | Zbl