@article{VTGU_2020_64_a1,
author = {I. V. Bychin and A. V. Gorelikov and A. V. Ryakhovskii},
title = {Numerical solution of the initial boundary value problem with vacuum boundary conditions for the magnetic field induction equation in a ball},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {15--30},
year = {2020},
number = {64},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_64_a1/}
}
TY - JOUR AU - I. V. Bychin AU - A. V. Gorelikov AU - A. V. Ryakhovskii TI - Numerical solution of the initial boundary value problem with vacuum boundary conditions for the magnetic field induction equation in a ball JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2020 SP - 15 EP - 30 IS - 64 UR - http://geodesic.mathdoc.fr/item/VTGU_2020_64_a1/ LA - ru ID - VTGU_2020_64_a1 ER -
%0 Journal Article %A I. V. Bychin %A A. V. Gorelikov %A A. V. Ryakhovskii %T Numerical solution of the initial boundary value problem with vacuum boundary conditions for the magnetic field induction equation in a ball %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2020 %P 15-30 %N 64 %U http://geodesic.mathdoc.fr/item/VTGU_2020_64_a1/ %G ru %F VTGU_2020_64_a1
I. V. Bychin; A. V. Gorelikov; A. V. Ryakhovskii. Numerical solution of the initial boundary value problem with vacuum boundary conditions for the magnetic field induction equation in a ball. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 64 (2020), pp. 15-30. http://geodesic.mathdoc.fr/item/VTGU_2020_64_a1/
[1] P. L. Olson, G. A. Glatzmaier, R. S. Coe, “Complex polarity reversals in a geodynamo model”, Earth Planet. Sci. Lett., 304 (2011), 168–179 | DOI
[2] P. Olson, P. Driscoll, H. Amit, “Dipole collapse and reversal precursors in a numerical dynamo”, Phys. Earth. Planet. Inter., 173 (2009), 121–140 | DOI
[3] L. Jouve, A. S. Brun, R. Arlt, A. Brandenburg, M. Dikpati, A. Bonanno, P. J. Käpylä, D. Moss, M. Rempel, P. Gilman, M. J. Korpi, A. G. Kosovichev, “A solar mean field dynamo benchmark”, Astron. Astrophys., 483 (2008), 949–960 | DOI
[4] G. A. Glatzmaier, “Computer simulations of Jupiter's deep internal dynamics help interpret what Juno sees”, Proc. Nat. Acad. Sci., 115:27 (2018), 6896–6904 | DOI
[5] C. Jones, “A dynamo model of Jupiter's magnetic field”, Icarus, 241 (2014), 148–159 | DOI
[6] C. A. Jones, “Convection-driven geodynamo models”, Phil. Trans. R. Soc. Lond. A, 358 (2000), 873–897 | DOI | MR | Zbl
[7] A. A. Jackson et al, “A spherical shell numerical dynamo benchmark with pseudo-vacuum magnetic boundary conditions”, Geophysical Journal International, 196:2 (2014), 712–723 | DOI
[8] V. Bandaru, T. Boeck, D. Krasnov, J. Schumacher, “A hybrid finite difference/boundary element procedure for the simulation of turbulent MHD duct flow at finite magnetic Reynolds number”, Journal of Computational Physics, 304 (2016), 320–339 | DOI | MR | Zbl
[9] G. A. Glatzmaier, “Numerical simulations of stellar convective dynamos I. The model and method”, Journal of Computational Physics, 55 (1984), 461–484 | DOI
[10] M. Yu. Reshetnyak, Simulation in Geodynamo, Lambert, Saarbrucken, 2013, 180 pp.
[11] A. Kageyama, T. Miyagoshi, T. Sato, “Formation of current coils in geodynamo simulations”, Nature, 454 (2008), 1106–1109 | DOI
[12] M. P. Galanin, Yu. P. Popov, Quasistatonary electromagnetic fields in inhomogeneous media: Mathematical simulation, Nauka; Fizmatlit, M., 1995
[13] P. Hejda, M. Reshetnyak, “Control volume method for the dynamo problem in the sphere with the free rotating inner core”, Studia geoph. et geod., 47 (2003), 147–159 | DOI
[14] A. G. Kulikovskij, N. V. Pogorelov, A. Yu. Semenov, Mathematical problems of numerical solution of hyperbolic systems of equations, Fizmatlit, M., 2001 | MR
[15] V. B. Betelin, V. A. Galkin, A. V. Gorelikov, “Predictor-corrector type algorithm for the numerical solution of the induction equation in problem of magnetic hydrodynamics of viscous incompressible fluid”, Doklady Akademii nauk, 464:5 (2015), 525–528 | DOI | MR | Zbl
[16] V. V. Kolmychkov, O. S. Mazhorova, E. E. Fedoseev, “Numerical Method for MHD Equations”, Preprinty IPM im. M.V. Keldysha, 2009, 030, 28 pp.
[17] G. Toth, “The $\nabla\cdot\mathbf{B=0}$ constraint in shock-capturing magnetohydrodynamics codes”, Journal of Computational Physics, 161 (2000), 605–652 | DOI | MR | Zbl
[18] M. V. Popov, T. G. Elizarova, “Simulation of 3D MHD flows within the framework of magneto-quasi-gasdynamics”, Preprinty IPM im. M.V. Keldysha, 2013, 23, 32 pp.
[19] K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, D. L. De Zeeuw, “A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics”, Journal of Computational Physics, 154 (1999), 284–309 | DOI | MR | Zbl
[20] R. Teyssier, B. Commercon, “Numerical Methods for Simulating Star Formation”, Frontiers in Astronomy and Space Sciences, 6 (2019), 51 | DOI
[21] L. D. Landau, E. M. Lifshitz, A Course of Theoretical Physics, v. 8, Electrodynamics of Continuous Media, Pergamon Press, Oxford, 1984 | MR
[22] A. G. Kulikovskiy, G. A. Lyubimov, Magnetohydrodynamics, Logos, M., 2011
[23] T. G. Cowling, Magnetohydrodynamics, Adam Hilger, Bristol, 1976, 136 pp. | MR | Zbl
[24] S. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing, Washington DC, 1980, 197 pp. | Zbl
[25] H. K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics, Pearson Education Limited, Harlow, 2007, 503 pp.
[26] J. H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, Springer, Berlin, 2002, 423 pp. | MR | Zbl
[27] A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd edition, Artech House, Boston, 2000, 866 pp. | MR | Zbl
[28] A. D. Grigorev, Methods of computational electrodynamics, Fizmatlit, M., 2012
[29] A. Ates, O. Altun, A. Kilicman, “On A Comparison of Numerical Solution Methods for General Transport Equation on Cylindrical Coordinates”, Applied Mathematics Information Sciences, 11:2 (2017), 433–439 | DOI
[30] S. K. Dewangan, S. L. Sinha, “Comparison of various numerical differencing schemes in predicting non-newtonian transition flow through an eccentric annulus with inner cylinder in rotation”, International Journal of Mechanical and Industrial Engineering, 3:1 (2013), 119–129
[31] K. Arshad, M. Rafique, A. Majid, S. Jabeen, “Analyses of MHD Pressure Drop in a Curved Bend for Different Liquid Metals”, Journal of Applied Sciences, 7:1 (2007), 72–78 | DOI | MR
[32] A. N. Tihonov, A. A. Samarskij, Equations of mathematical physics, Nauka, M., 1972 | MR
[33] A. V. Gorelikov, “An axisymmetric solution of the problem about demagnetization of a conducting ball”, Vestnik kibernetiki, 2018, no. 4 (32), 9–15