@article{VTGU_2020_63_a8,
author = {V. V. Kozlov and A. A. Markin},
title = {Testing of defining relations of nonlinear theory of elasticity in an axial strain of a hollow cylinder},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {102--114},
year = {2020},
number = {63},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_63_a8/}
}
TY - JOUR AU - V. V. Kozlov AU - A. A. Markin TI - Testing of defining relations of nonlinear theory of elasticity in an axial strain of a hollow cylinder JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2020 SP - 102 EP - 114 IS - 63 UR - http://geodesic.mathdoc.fr/item/VTGU_2020_63_a8/ LA - ru ID - VTGU_2020_63_a8 ER -
%0 Journal Article %A V. V. Kozlov %A A. A. Markin %T Testing of defining relations of nonlinear theory of elasticity in an axial strain of a hollow cylinder %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2020 %P 102-114 %N 63 %U http://geodesic.mathdoc.fr/item/VTGU_2020_63_a8/ %G ru %F VTGU_2020_63_a8
V. V. Kozlov; A. A. Markin. Testing of defining relations of nonlinear theory of elasticity in an axial strain of a hollow cylinder. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 63 (2020), pp. 102-114. http://geodesic.mathdoc.fr/item/VTGU_2020_63_a8/
[1] M. Zingerman, L. M. Zubov, “Exact solutions to the problems of the theory of repeated superposition of large strains for the bodies derived from a successive junction of deformed parts”, Chebyshevskiy sbornik, 18:3 (2017), 255–279 | DOI | MR | Zbl
[2] Yu. Yu. Andreeva, B. A. Zhukov, “Exact analytical solutions to a problem of the nonlinear theory of elasticity for two strain energy potentials of an incompressible material”, Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki — University Proceedings. Volga Region. Physical and Mathematical Sciences, 2018, no. 2(46), 64–76 | DOI
[3] Y. V. Astapov, D. V. Khristich, “Finite deformations of an elastic cylinder during indentation”, International Journal of Applied Mechanics, 12:3 (2018) | DOI
[4] N. A. Shchukina, “Features of solutions of problems of nonlinear elasticity theory in the framework of second order effects”, Mezhdunarodnyy zhurnal prikladnykh i fundamental'nykh issledovaniy — International Journal of Applied and Fundamental Research, 2016, no. 3–4, 543–547
[5] K. V. Gubaev, “Developing of constitutive equations for flowing anisotropic nonlinearly elastic materials”, Trudy Moskovskogo fiziko-tekhnicheskogo instituta (gosudarstvennogo universiteta) — Proceedings of Moscow Institute of Physics and Technology (State University), 6:3 (2014), 122–128
[6] V. V. Kozlov, A. A. Markin, “Questions specification of the defining relationships of nonlinear elasticity theory by considering uniaxial homogeneous tension”, Izvestiya Tul'skogo gosudarstvennogo universiteta. Estestvennye nauki — Bulletin of the Tula State University, 2015, no. 4, 137–143
[7] L. M. Zubov, “Universal solution of nonlinear elasticity for a hollow cylinder with prestressed coatings”, Acta Mechanica, 2018 | DOI | MR
[8] J. Merodio, R. W. Ogden, “Extension, inflation and torsion of a residually stressed circular cylindrical tube”, Continuum Mechanics and Thermodynamics, 28 (2016), 157–174 | DOI | MR | Zbl
[9] M. I. Karyakin, N. Yu. Shubchinskaya, “On stability of a nonlinearly elastic cylinder with internal stresses under tension and compression”, Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Estestvennye nauki — Izvestiya Vuzov. Severo-Kavkazskii Region. Natural Science, 2016, no. 2(190), 54–60 | DOI
[10] E. P. Kolpak, “A hollow cylinder made of incompressible material under large deformations”, Nelineynye problemy mekhaniki i fiziki tverdogo tela, Trudy nauchnoy shkoly akademika V.V. Novozhilova, 1, 1998, 96–117
[11] E. E. Lavendel, Calculation of rubber-technical products, Mashinostroenie, M., 1976, 228 pp.
[12] S. D. Ponomarev, V. L. Biderman, Strength calculations in mechanical engineering, v. 2, Mashgiz, M., 1958, 975 pp.
[13] A. I. Lurie, Nonlinear Theory of Elasticity, North-Holland, Amsterdam, 1990 | MR | Zbl
[14] F. Beatty Millard, “Qing Jiang On compressible materials capable of sustaining axisymmetric shear deformations. Part 2: Rotational shear of isotropic hyperelastic materials”, Q. J. Mechanics Appl. Math., 50:2 (1997), 211–237 | DOI | MR | Zbl
[15] A. N. Guz', Stability of elastic bodies under finite strains, Naukova dumka, Kyiv, 1973, 270 pp.
[16] L. A. Tolokonnikov, “Alternate version of relations of the multimodulus elasticity theory”, Prochnost' i plastichnost', v. 1, 1971, 102–104
[17] A. A. Markin, D. V. Khristich, Nonlinear theory of elasticity, tutorial, TulGU, Tula, 2007
[18] A. V. Muravlev, “On a representation of an elastic potential in A.A. Il'yushin's generalized strain space”, Mechanics of Solids, 46 (2011), 77–79 | DOI
[19] A. A. Markin, Continuum thermomechanics, tutorial, TulGU, Tula, 2009
[20] K. Levenberg, “A method for the solution of certain problems in last squares”, Quart. Appl. Math., 2 (1944), 164–168 | DOI | MR | Zbl
[21] D. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters”, SIAM Journal on Applied Mathematics, 11:2 (1963), 431–441 | DOI | MR | Zbl