Testing of defining relations of nonlinear theory of elasticity in an axial strain of a hollow cylinder
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 63 (2020), pp. 102-114 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An attempt to validate the accuracy of the defining relations of nonlinear theory of elasticity is made using the model of static axial strain of a hollow cylinder. A closed system of nonlinear differential equations for two unknown functions is obtained. The first function describes the cylinder points' movement in the radial direction, and the second, in the axial direction. Displacements of the inner and outer surfaces of the cylinder are specified as boundary conditions. A difference scheme for resulting system transition to a system of nonlinear equations is described. The dependences of the axial force on the outer holder displacement are obtained for three quasilinear defining relations. In the first case, the energy stress tensor is related to the Cauchy–Green deformation tensor. In the second case, the «rotated» tensor of true stresses and the Hencky tensor are used. In the third case, the incompressibility condition is imposed. It is shown that the dependence of the axial force on the axial displacement of the outer cylinder surface significantly depends on the defining relation chosen. The obtained dependencies can be used to verify the reliability of the defining relations.
Keywords: axial strain, hollow cylinder, nonlinear elasticity, defining relations.
@article{VTGU_2020_63_a8,
     author = {V. V. Kozlov and A. A. Markin},
     title = {Testing of defining relations of nonlinear theory of elasticity in an axial strain of a hollow cylinder},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {102--114},
     year = {2020},
     number = {63},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_63_a8/}
}
TY  - JOUR
AU  - V. V. Kozlov
AU  - A. A. Markin
TI  - Testing of defining relations of nonlinear theory of elasticity in an axial strain of a hollow cylinder
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 102
EP  - 114
IS  - 63
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_63_a8/
LA  - ru
ID  - VTGU_2020_63_a8
ER  - 
%0 Journal Article
%A V. V. Kozlov
%A A. A. Markin
%T Testing of defining relations of nonlinear theory of elasticity in an axial strain of a hollow cylinder
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 102-114
%N 63
%U http://geodesic.mathdoc.fr/item/VTGU_2020_63_a8/
%G ru
%F VTGU_2020_63_a8
V. V. Kozlov; A. A. Markin. Testing of defining relations of nonlinear theory of elasticity in an axial strain of a hollow cylinder. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 63 (2020), pp. 102-114. http://geodesic.mathdoc.fr/item/VTGU_2020_63_a8/

[1] M. Zingerman, L. M. Zubov, “Exact solutions to the problems of the theory of repeated superposition of large strains for the bodies derived from a successive junction of deformed parts”, Chebyshevskiy sbornik, 18:3 (2017), 255–279 | DOI | MR | Zbl

[2] Yu. Yu. Andreeva, B. A. Zhukov, “Exact analytical solutions to a problem of the nonlinear theory of elasticity for two strain energy potentials of an incompressible material”, Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki — University Proceedings. Volga Region. Physical and Mathematical Sciences, 2018, no. 2(46), 64–76 | DOI

[3] Y. V. Astapov, D. V. Khristich, “Finite deformations of an elastic cylinder during indentation”, International Journal of Applied Mechanics, 12:3 (2018) | DOI

[4] N. A. Shchukina, “Features of solutions of problems of nonlinear elasticity theory in the framework of second order effects”, Mezhdunarodnyy zhurnal prikladnykh i fundamental'nykh issledovaniy — International Journal of Applied and Fundamental Research, 2016, no. 3–4, 543–547

[5] K. V. Gubaev, “Developing of constitutive equations for flowing anisotropic nonlinearly elastic materials”, Trudy Moskovskogo fiziko-tekhnicheskogo instituta (gosudarstvennogo universiteta) — Proceedings of Moscow Institute of Physics and Technology (State University), 6:3 (2014), 122–128

[6] V. V. Kozlov, A. A. Markin, “Questions specification of the defining relationships of nonlinear elasticity theory by considering uniaxial homogeneous tension”, Izvestiya Tul'skogo gosudarstvennogo universiteta. Estestvennye nauki — Bulletin of the Tula State University, 2015, no. 4, 137–143

[7] L. M. Zubov, “Universal solution of nonlinear elasticity for a hollow cylinder with prestressed coatings”, Acta Mechanica, 2018 | DOI | MR

[8] J. Merodio, R. W. Ogden, “Extension, inflation and torsion of a residually stressed circular cylindrical tube”, Continuum Mechanics and Thermodynamics, 28 (2016), 157–174 | DOI | MR | Zbl

[9] M. I. Karyakin, N. Yu. Shubchinskaya, “On stability of a nonlinearly elastic cylinder with internal stresses under tension and compression”, Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Estestvennye nauki — Izvestiya Vuzov. Severo-Kavkazskii Region. Natural Science, 2016, no. 2(190), 54–60 | DOI

[10] E. P. Kolpak, “A hollow cylinder made of incompressible material under large deformations”, Nelineynye problemy mekhaniki i fiziki tverdogo tela, Trudy nauchnoy shkoly akademika V.V. Novozhilova, 1, 1998, 96–117

[11] E. E. Lavendel, Calculation of rubber-technical products, Mashinostroenie, M., 1976, 228 pp.

[12] S. D. Ponomarev, V. L. Biderman, Strength calculations in mechanical engineering, v. 2, Mashgiz, M., 1958, 975 pp.

[13] A. I. Lurie, Nonlinear Theory of Elasticity, North-Holland, Amsterdam, 1990 | MR | Zbl

[14] F. Beatty Millard, “Qing Jiang On compressible materials capable of sustaining axisymmetric shear deformations. Part 2: Rotational shear of isotropic hyperelastic materials”, Q. J. Mechanics Appl. Math., 50:2 (1997), 211–237 | DOI | MR | Zbl

[15] A. N. Guz', Stability of elastic bodies under finite strains, Naukova dumka, Kyiv, 1973, 270 pp.

[16] L. A. Tolokonnikov, “Alternate version of relations of the multimodulus elasticity theory”, Prochnost' i plastichnost', v. 1, 1971, 102–104

[17] A. A. Markin, D. V. Khristich, Nonlinear theory of elasticity, tutorial, TulGU, Tula, 2007

[18] A. V. Muravlev, “On a representation of an elastic potential in A.A. Il'yushin's generalized strain space”, Mechanics of Solids, 46 (2011), 77–79 | DOI

[19] A. A. Markin, Continuum thermomechanics, tutorial, TulGU, Tula, 2009

[20] K. Levenberg, “A method for the solution of certain problems in last squares”, Quart. Appl. Math., 2 (1944), 164–168 | DOI | MR | Zbl

[21] D. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters”, SIAM Journal on Applied Mathematics, 11:2 (1963), 431–441 | DOI | MR | Zbl